PRICE: $5.00

©Intel Corporation 1975 98-153B

In December 1973 Intel shipped the first 8-bit, N-channel microprocessor,
the 8080. Since then it has become the most widely used microprocessor in
the industry. Applications of the 8080 span from large, intelligent systems
terminals to decompression computers for deep sea divers.

This 8080 Microcomputer Systems User's Manual presents all of the
8080 system components. Over twenty-five devices are described in detail.
These new devices further enhance the 8080 system:

8080A — 8-Bit Central Processor Unit
Functionally and Electrically Compatible with the 8080.
TTL Drive Capability.
Enhanced Timing.

8224 — Clock Generator for 8080A.
Single 16 Pin (DIP) Package.
Auxiliary Timing Functions.
Power-On Reset.
8228 — System Controller for 8080A.
Single 28 Pin (DIP) Package.
Single Interrupt Vector (RST 7).
,Multi-Byte Interrupt Instruction Capability {e.g. CALL).
Direct Data and Control Bus Connect to all 8080 System. |/O
and Memory Components.
8251 — Programmable Communication Interface.
ASYNC or SYNC (including IBM bi-SYNC).
Single 28 Pin Package.
Single +5 Volt Power Supply.
8255 — Programmable Peripheral Interface.
Three 8-Bit Ports.
Bit Set/Reset Capability.
Interrupt Generation.
Single 40 Pin Package.
Single +5 Volt Power Supply.

In addition, new memory components include: 8708, 8K Erasable PROM;
8316A, High Density Mask ROM; and 5101, Low Power CMOS RAM.

|nte| Microcomputers. First from the beginning.

INTRODUCTION
General

Application Table

CHAPTER 1 —
THE FUNCTIONS OF A COMPUTER

A Typical Computer System
The ArchitectureofaCPU
Computer Operations

CHAPTER 2 —
THE 8080 CENTRAL PROCESSING UNIT

General

CHAPTER 3 —
INTERFACING THE 8080

General

Interfacing the 8080 to Memory and

1/ODevices it

Advantages of Designing with Microcomputers . .
Microcomputer Design Aids
Application Example

Architecture of the 8080CPU
TheProcessorCycle
InterruptSequences
HoldSequences.
HaltSequences
Start-up of the 8080CPU

Basic System Operation
CPU ModuleDesign

CONTENTS

1-1
1-1
1-3

2-1
22
2-3
2-11
2-12
2-13
2-13

3-1
3-1
3-2

CHAPTER 4 —
INSTRUCTION SET

General e
Data Transfer Group
ArithmeticGroup
BranchGroupc......
Stack, 1/0 and Machine Control Group
Summary Table

CHAPTER 5 —
8080 MICROCOMPUTER SYSTEM COMPONENTS
CPU Group

8224 Clock Generator

Functional Description and
System Applications

DataSheet
8228 System Controller

Functional Description and
System Applications.

DataSheet
8080A Central Processor

DataSheetccivuv.n..
8080A-1 Central Processor (1.3us)

DataSheetciiiinnn.
8080A-2 Central Processor (1.5us)

DataSheet0iiiiunn.
M8080A Central Processor (-55° to +125°C)

Data Sheet

........................

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied.

ROM:s

8702A Erasable PROM (256 x 8)

DataSheetccoiiiiiinnnnn. 5-37
8708/8704 Erasable PROM (1K x 8) ‘

DataSheetciiiiinnn.. 545
8302 Mask ROM (256 x 8)

DataSheet 5-51
8308 Mask ROM (1K x 8)

DataSheet 5-59
8316A Mask ROM (2K x 8)

DataSheet, 5-61

RAMs

8101-2 Static RAM (256 x 4)

DataSheet oi e 5-67
8111-2 Static RAM (256 x 4)

DataSheet 5-71
8102-2 Static RAM (1K x 1)

DataSheet 575
8102A-4 Static RAM (1K x 1)

DataSheet 579
8107B-4 Dynamic RAM (4K x 1)

DataSheet, 5-83
5101 Static CMOS RAM (256 x 4)

DataSheet 5-91
8210 Dynamic RAM Driver

DataSheetc v, 5-95
8222 Dynamic RAM Refresh Controller

New Product Announcement 5-99

1/0

8212 8-Bit 1/0 Port

Functional Description 5-101

System Applications of the 8212 5-103

DataSheetcciuien.. 5-109

8255 Programmable Peripvheral Interface

Basic Functional Description 5113
Detailed Operational Description 5-116
System Applications of the 8265 5127
DataSheetcciviinnnnn 5-130
8251 Programmable Communication Interface
Basic Functional Description 5-135
Detailed Operational Description 5-139
System Applications of the 8261 5-143
DataSheetc.cciuiinn.n. 5-144
Peripherals
8205 One of 8 Decoder
Functional Description 5-147
System Applications of the 8205 5-149
DataSheett unnn. 5-151
8214 Priority Interrupt Control Unit
Interrupts in Microcomputer Systems 5-153
Functional Description 5-155
System Applications of the 8214 5-157
DataSheetcoio... 5-160
8216/8226 4-Bit Bi-Directional Bus Driver
Functional Description 5-163
System Applications of the 8216/8226 5-165
DataSheet 5-166
Coming Soon
82563 Programmable Interval Timer 5-169
8257 Programmable DMA Controller 5171
8259 Programmable Interrupt Controller 5-173
CHAPTER 6 —
PACKAGING INFORMATION. 6-1

o
c®
o0

A\

Since their inception, digital computers have contin-
uously become more efficient, expanding into new appli-
cations with each major technological improvement. The
advent of minicomputers enabled the inclusion of digital
computers as a permanent part of various process control
systems. Unfortunately, the size and cost of minicomputers
in “dedicated’’ applications has limited their use. Another
approach has been the use of custom built systems made up
of “random logic” (i.e., logic gates, flip-flops, counters, etc.).
However, the huge expense and development time involved
in the design and debugging of these systems has restricted
their use to large volume applications where the develop-
ment costs could be spread over a large number of machines.

Today, Intel offers the systems designer a new alter-
native . . .the microcomputer. Utilizing the technologies and
experience gained in becoming the world’s largest supplier
of LS| memory components, Intel has made the power of
the digital computer available at the integrated circuit level.
Using the n-channel silicon gate MOS process, Intel engi-
neers have implemented the fast (2 us. cycle) and powerful
(72 basic instructions) 8080 microprocessor on a single LS|
chip. When this processor is combined with memory and
1/0 circuits, the computer is complete. Intel offers a variety
of random-access memory (RAM), read-only memory (ROM)
and shift register C|rcu1ts that combine with the 8080 pro-
cessor to form the MCS 80 microcomputer system, a system
that can directly address and retrieve as many as 65,5636
bytes stored in the memory devices.

The 8080 processor is packaged in a 40-pin dual in-line
package (DIP) that allows for remarkably easy interfacing.
The 8080 has a 16-bit address bus, a 8-bit bidirectional data
bus and fully decoded, TTL-compatible control outputs. In
addition to supporting up to 64K bytes of mixed RAM and
ROM memory, the 8080 can address up to 256 input ports
and 256 output ports; thus allowing for virtually unlimited
system expansion. The 8080 instruction set includes con-
ditional branching, decimal as well as binary arithmetic,

logical, register-to-register, stack control and memory refer-
ence instructions. In fact, the 8080 instruction set is power-
ful enough to rival the performance of many of the much
higher priced minicomputers, yet the 8080 is upward soft-
ware compatible with Intel’s earlier 8008 microprocessor
(i.e., programs written for the 8008 can be assembled and
executed on the 8080).

In addition to an extensive instruction set oriented to
problem solving, the 8080 has another significant feature—
SPEED. In contrast to random logic designs which tend to
work in parallel, the microcomputer works by sequentially
executing its program. As a result of this sequential execu-
tion, the number of tasks a microcomputer can undertake
in a given period of time is directly proportional to the
execution speed of the microcomputer. The speed of exe-
cution is the limiting factor of the realm of applications of
the microcomputer. The 8080, with instruction times as
short as 2 usec., is an order of magnitude faster than earlier
generations of microcomputers, and therefore has an ex-
panded field of potential applications.

The architecture of the 8080 also shows a significant
improvement over earlier microcomputer designs. The 8080
contains a 16-bit stack pointer that controls the addressing
of an external stack located in memory. The pointer can be
initialized via the proper instructions such that any portion
of external memory can be used as a last in/first out stack;
thus enabling almost unlimited subroutine nesting. The stack
pointer allows the contents of the program counter, the ac-
cumulator, the condition flags or any of the data registers to
be stored in or retrieved from the external stack. In addi-
tion, multi-level interrupt processing is possible using the
8080’s stack control instructions. The status of the pro-
cessor can be ‘“pushed” onto the stack when an interrupt is
accepted, then “popped” off the stack after the interrupt has
been serviced. This ability to save the contents of the pro-
cessor’s registers is possible even if an interrupt service
routine, itself, is interrupted.

CONVENTIONAL SYSTEM

PROGRAMMED LOGIC

Product definition
System and logic design

Debug
Lab Instrumentation
PC card layout
Documentation
Cooling and packaging

Power distribution
Engineering changes

Done with conventional

Done with yellow wire

Done with logic diagrams

Simplified because of ease of incorporating features
Can be programmed with design aids

(compilers, assemblers, editors)
Software and hardware aids reduce time

Fewer cards to layout

Less hardware to document

Reduced system size and power consumption
eases job

Less power to distribute

Change program

Table 0-1. The Advantages of Using Microprocessors

ADVANTAGES OF DESIGNING
WITH MICROCOMPUTERS

Microcomputers simplify almost every phase of pro-
duct development. The first step, as in any product devel-
opment program, is to identify the various functions that
the end system is expected to perform. Instead of realizing
these functions with networks of gates and flip-flops, the
functions are implemented by encoding suitable sequences
of instructions (programs) in the memory elements. Data
and certain types of programs are stored in RAM, while the
basic program can be stored in ROM. The microprocessor
performs all of the system’s functions by fetching the in-
structions in memory, executing them and communicating
the results via the microcomputer’s 1/0 ports. An 8080
microprocessor, executing the programmed logic stored in a
single 2048-byte ROM element, can perform the same logical
functions that might have previously required up to 1000
logic gates.

The benefits of designing a microcomputer into your
system go far beyond the advantages of merely simplifying
product development. You will also appreciate the profit-
making advantages of using a microcomputer in place of
custom-designed random logic. The most apparent advantage
is the significant savings in hardware costs. A microcomputer
chip set replaces dozens of random logic elements, thus re-
ducing the cost as well as the size of your system. In addi-
tion, production costs drop as the number of individual
components to be handled decreases, and the number of
complex printed circuit boards (which are difficult to lay-
out, test and correct) is greatly reduced. Probably the most
profitable advantage of a microcomputer is its flexibility
for change. To modify your system, you merely re-program
the memory elements; you don’t have to redesign the entire
system. You can imagine the savings in time and money
when you want to upgrade your product. Reliability is
another reason to choose the microcomputer over random
logic. As the number of components decreases, the prob-
ability of a malfunctioning element likewise decreases. All

of the logical control functions formerly performed by
numerous hardware components can now be implemented
in a few ROM circuits which are non-volatile; that is, the
contents of ROM will never be lost, even in the event of a
power failure. Table 0-1 summarizes many of the advan-
tages of using microcomputers.

MICROCOMPUTER DESIGN AIDS

If you're used to logic design and the idea of designing
with programmed logic seems like too radical a change, re-
gardless of advantages, there's no need to worry because
Intel has already done most of the groundwork for you. The
INTELLEC® 8 Development Systems provide flexible, in-
expensive and simplified methods for OEM product develop-
ment. The INTELLEC® 8 provides RAM program storage
making program loading and modification easier, a display
and control console for system monitoring and debugging,
a standard TTY interface, a PROM programming capability
and a standard software package (System Monitor, Assem-
bler and Test Editor). In addition to the standard software
package available with the INTELLEC® 8, Intel offers a
PL/M"compiler, a cross-assembler and a simulator written in
FORTRAN IV and designed to run on any large scale com-
puter. These programs may be procured directly from Intel
or from a number of nationwide computer time-sharing
services. Intel’s Microcomputer Systems Group is always
available to provide assistance in every phase of your product
development.

Intel also provides complete documentation on all
their hardware and software products. In addition to this
User’s Manual, there are the:

PL/M'"Language Reference Manual

8080 Assembly Language Programming Manual
INTELLEC®8/MOD 80 Operator’s Manual
INTELLEC®8/MOD 80 Hardware Reference
Manual

e 8080 User’s Program Library

APPLICATIONS EXAMPLE

The 8080 can be used as the basis for a wide variety
of calculation and control systems. The system configura-
tions for particular applications will differ in the nature of
the peripheral devices used and in the amount and the type
of memory required. The applications and solutions de-
scribed in this section are presented primarily to show how
microcomputers can be used to solve design problems. The
8080 should not be considered limited either in scope or
performance to those applications listed here.

Consider an 8080 microcomputer used within an auto-
matic computing scale for a supermarket. The basic machine
has two input devices: the weighing unit and a keyboard,
used for function selection and to enter the price per unit
of weight. The only output device is a display showing the
total price, although a ticket printer might be added as an
optional output device.

The control unit must accept weight information from
the weighing unit, function and data inputs from the key-
board, and generate the display. The only arithmetic func-
tion to be performed is a simple multiplication of weight
times rate.

The control unit could probably be realized with
standard TTL logic. State diagrams for the various portions
could be drawn and a multiplier unit designed. The whole
design could then be tied together, and eventually reduced
to a selection of packages and a printed circuit board layout.
In effect, when designing with a logic family such as TTL,
the designs are “‘customized” by the choice of packages and
the wiring of the logic.

If, however, an 8080 microcomputer is used to realize

the control unit (as shown in Figure 0-1), the only “custom”
logic will be that of the interface circuits. These circuits are
usually quite simple, providing electrical buffering for the
input and output signals.

Instead of drawing state diagrams leading to logic, the
system designer now prepares a flow chart, indicating which
input signals must be read, what processing and computa-
tions are needed, and what output signals must be produced.
A program is written from the flow chart. The program is
then assembled into bit patterns which are loaded into the
program memory. Thus, this system is customized primarily
by the contents of program memory.

For this automatic scale, the program would probably
reside in read-only memory (ROM), since the microcom-
puter would always execute the same program, the one
which implements the scale functions. The processor would
constantly monitor the keyboard and weighing unit, and up-
date the display whenever necessary. The unit would require
very little data memory; it would only be needed for rate
storage, intermediate results, and for storing a copy of the
display.

When the control portion of a product is implemented
with a microcomputer chip set, functions can be changed
and features added merely by altering the program in mem-
ory. With a TTL based system, however, alterations may re-
quire extensive rewiring, alteration of PC boards, etc.

The number of applications for microcomputers is
limited only by the depth of the designer’s imagination. We
have listed a few potential applications in Table 0-2, along
with the types of peripheral devices usually associated with
each product.

KEYBOARD PRINTER
oo
Q00 1 54 DISPLAY
000
WEIGHING coo | 00 —
HE::
009 | o0 o] [
3 ¥
|
|
r—" |
INPUT INPUT OUTPUT : OPTIONAL :
INTERFACE #1 INTERFACE #2 INTERFACE #1 | rehrace«2 |
-—— ——
8080 l l 1 | T ||
cPU P
BUS
CONTROL)
UNIT t
PROGRAM DATA
MEMORY MEMORY
(PROM) {RAM)

Figure 0-1. Microcomputer Application — Automatic Scale

APPLICATION PERIPHERAL DEVICES ENCOUNTERED

Intelligent Terminals Cathode Ray Tube Display

Printing Units

Synchronous and Asynchronous data lines
Cassette Tape Unit

Keyboards

Gaming Machines Keyboards, pushbuttons and switches
Various display devices

Coin acceptors

Coin dispensers

Cash Registers Keyboard or Input Switch Array
Change Dispenser

Digital Display

Ticket Printer

Magnetic Card reader
Communication interface

Accounting and Billing Machines Keyboard

Printer Unit

Cassette or other magnetic tape unit
“Floppy’’ disks

Telephone Switching Control Telephone Line Scanner
Analog Switching Network
Dial Registers

Class of Service Parcel

Numerically Controlled Machines Magnetic or Paper Tape Reader
Stepper Motors
Optical Shaft Encoders

Process Control Analog-to-Digital Converters
Digital-to-Analog Converters
Control Switches

Displays

Table 0-2. Microprocessor Applications

A
I g
3 \O
CX\?‘?Q\\“ ‘c’:\s«}

This chapter introduces certain basic computer con-
cepts. It provides background information and definitions
which will be useful in later chapters of this manual. Those
already familiar with computers may skip this material, at
their option.

A TYPICAL COMPUTER SYSTEM
A typical digital computer consists of:

a) A central processor unit (CPU)
b) A memory
c) Input/output (1/0) ports

The memory serves as a place to store Instructions,
the coded pieces of information that direct the activities of
the CPU, and Data, the coded pieces of information that are
processed by the CPU. A group of logically related instruc-
tions stored in memory is referred to as a Program. The CPU
“reads’ each instruction from memory in a logically deter-
mined sequence, and uses it to initiate processing actions.
If the program sequence is coherent and logical, processing
the program will produce intelligible and useful results.

The memory is also used to store the data to be manip-
ulated, as well as the instructions that direct that manipu-
lation. The program must be organized such that the CPU
does not read a non-instruction word when it expects to
see an instruction. The CPU can rapidly access any data
stored in memory; but often the memory is not large enough
to store the entire data bank required for a particular appli-
cation. The problem can be resolved by providing the com-
puter with one or more Input Ports. The CPU can address
these ports and input the data contained there. The addition
of input ports enables the computer to receive information
from external equipment (such as a paper tape reader or
floppy disk) at high rates of speed and in large volumes,

A computer also requires one or more Output Ports
that permit the CPU to communicate the result of its pro-
cessing to the outside world. The output may go to a dis-
play, for use by a human operator, to a peripheral device
that produces “’hard-copy,” such as a line-printer, to a

11

peripheral storage device, such as a floppy disk unit, or the
output may constitute process control signals that direct the
operations of another system, such as an automated assembly
line. Like input ports, output ports are addressable. The
input and output ports together permit the processor to
communicate with the outside world.

The CPU unifies the system. It controls the functions
performed by the other components. The CPU must be able
to fetch instructions from memory, decode their binary
contents and execute them. It must also be able to reference
memory and |/O ports as necessary in the execution of in-
structions. In addition, the CPU should be able to recognize
and respond to certain external control signals, such as
INTERRUPT and WAIT requests. The functional units
within a CPU that enable it to perform these functions are
described below.

THE ARCHITECTURE OF A CPU

A typical central processor unit (CPU) consists of the
following interconnected functional units:

e Registers
e Arithmetic/Logic Unit (ALU) \
e Control Circuitry

Registers are temporary storage units within the CPU.
Some registers, such as the program counter and instruction
register, have dedicated uses. Other registers, such as the ac-
cumulator, are for more general purpose use.

Accumulator:

The accumulator usually stores one of the operands
to be manipulated by the ALU. A typical instruction might
direct the ALU to add the contents of some other register to
the contents of the accumulator and store the result in the
accumulator itself. In general, the accumulator is both a
source (operand) and a destination (result) register.

Often a CPU will include a number of additional
general purpose registers that can be used to store operands
or intermediate data. The availability of general purpose

registers eliminates the need to “‘shuffle” intermediate re-
sults back and forth between memory and the accumulator,
thus improving processing speed and efficiency.

Program Counter (Jumps, Subroutines
and the Stack):

The instructions that make up a program are stored
in the system’s memory. The central processor references
the contents of memory, in order to determine what action
is appropriate. This means that the processor must know
which location contains the next instruction.

Each of the locations in memory is numbered, to dis-
tinguish it from all other locations in memory. The number
which identifies a memory location is called its Address.

The processor maintains a counter which contains the
address of the next program instruction. This register is
called the Program Counter. The processor updates the pro-
gram counter by adding ‘1" to the counter each time it
fetches an instruction, so that the program counter is always
current (pointing to the next instruction).

The programmer therefore stores his instructions in
numerically adjacent addresses, so that the lower addresses
contain the first instructions to be executed and the higher
addresses contain later instructions. The only time the pro-
grammer may violate this sequential rule is when an instruc-
tion in one section of memory is a Jump instruction to
another section of memory.

A jump instruction contains the address of the instruc-
tion which is to follow it. The next instruction may be
stored in any memory location, as long as the programmed
jump specifies the correct address. During the execution of
ajump instruction, the processor replaces the contents of its
program counter with the address embodied in the Jump.
Thus, the logical continuity of the program is maintained.

A special kind of program jump occurs when the stored
program “‘Calls” a subroutine. In this kind of jump, the pro-
cessor is required to “‘remember’’ the contents of the pro-
gram counter at the time that the jump occurs. This enables
the processor to resume execution of the main program
when it is finished with the last instruction of the subroutine.

A Subroutine is a program within a program. Usually
it is a general-purpose set of instructions that must be exe-
cuted repeatedly in the course of a main program. Routines
which calculate the square, the sine, or the logarithm of a
program variable are good examples of functions often
written as subroutines. Other examples might be programs
designed for inputting or outputting data to a particular
peripheral device.

The processor has a special way of handling sub-
routines, in order to insure an orderly return to the main
program. When the processor receives a Call instruction, it
increments the Program Counter and stores the counter’s
contents in a reserved memory area known as the Stack.
The Stack thus saves the address of the instruction to be
executed after the subroutine is completed. Then the pro-

1-2

cessor loads the address specified in the Call into its Pro-
gram Counter. The next instruction fetched will therefore
be the first step of the subroutine.

The last instruction in any subroutine is a Return. Such
an instruction need specify no address. When the processor
fetches a Return instruction, it simply replaces the current
contents of the Program Counter with the address on the
top of the stack. This causes the processor to resume execu-
tion of the calling program at the point immediately follow-
ing the original Call Instruction.

Subroutines are often Nested; that is, one subroutine
will sometimes call a second subroutine. The second may
call a third, and so on. This is perfectly acceptable, as long
as the processor has enough capacity to store the necessary
return addresses, and the logical provision for doing so. In
other words, the maximum depth of nesting is determined
by the depth of the stack itself. If the stack has space for
storing three return addresses, then three levels of subrou-
tines may be accommodated.

Processors have different ways of maintaining stacks.
Some have facilities for the storage of return addresses built
into the processor itself. Other processors use a reserved
area of external memory as the stack and simply maintain a
Pointer register which contains the address of the most
recent stack entry. The external stack allows virtually un-
limited subroutine nesting. In addition, if the processor pro-
vides instructions that cause the contents of the accumulator
and other general purpose registers to be “’pushed’’ onto the
stack or “popped’’ off the stack via the address stored in the
stack pointer, multi-level interrupt processing (described
later in this chapter) is possible. The status of the processor
(i.e., the contents of all the registers) can be saved in the
stack when an interrupt is accepted and then restored after
the interrupt has been serviced. This ability to save the pro-
cessor’s status at any given time is possible even if an inter-
rupt service routine, itself, is interrupted.

Instruction Register and Decoder:

Every computer has a Word Length that is characteris-
tic of that machine. A computer’s word length is usually
determined by the size of its internal storage elements and
interconnecting paths (referred to as Busses); for example,
a computer whose registers and busses can store and trans-
fer 8 bits of information has a characteristic word length of
8-bits and is referred to as an 8-bit parallel processor. An
eight-bit parallel processor generally finds it most efficient
to deal with eight-bit binary fields, and the memory asso-
ciated with such a processor is therefore organized to store
eight bits in each addressable memory location. Data and
instructions are stored in memory as eight-bit binary num-
bers, or as numbers that are integral multiples of eight bits:
16 bits, 24 bits, and so on. This characteristic eight-bit field
is often referred to as a Byte.

Each operation that the processor can perform is
identified by a unique byte of data known as an Instruction

Code or Operation Code. An eight-bit word used as an in-
struction code can distinguish between 256 alternative
actions, more than adequate for most processors.

The processor fetches an instruction in two distinct
operations. First, the processor transmits the address in its
Program Counter to the memory. Then the memory returns
the addressed byte to the processor. The CPU stores this
instruction byte in a register known as the Instruction
Register, and uses it to direct activities during the remainder
of the instruction execution.

The mechanism by which the processor translates an
instruction code into specific processing actions requires
more elaboration than we can here afford. The concept,
however, should be intuitively clear to any logic designer.
The eight bits stored in the instruction register can be de-
coded and used to selectively activate one of a number of
output lines, in this case up to 256 lines. Each line repre-
sents a set of activities associated with execution of a par-
ticular instruction code. The enabled line can be combined
with selected timing pulses, to develop electrical signals that
can then be used to initiate specific actions. This transla-
tion of code into action is performed by the Instruction
Decoder and by the associated control circuitry.

An eight-bit instruction code is often sufficient to
specify a particular processing action. There are times, how-
ever, when execution of the instruction requires more infor-
mation than eight bits can convey.

One example of this is when the instruction refer-
ences a memory location. The basic instruction code iden-
tifies the operation to be performed, but cannot specify
the object address as well. In a case like this, a two- or three-
byte instruction must be used. Successive instruction bytes
are stored in sequentially adjacent memory locations, and
the processor performs two or three fetches in succession to
obtain the full instruction. The first byte retrieved from
memory is placed in the processor’s instruction register, and
subsequent bytes are placed in temporary storage; the pro-
cessor then proceeds with the execution phase. Such an
instruction is referred to as Variable Length.

Address Register(s):

A CPU may use a register or register-pair to hold the
address of a memory location that is to be accessed for
data. If the address register is Programmable, (i.e., if there
are instructions that allow the programmer to alter the
contents of the register) the program can ‘‘build” an ad-
dress in the address register prior to executing a Memory
Reference instruction (i.e., an instruction that reads data
from memory, writes data to memory or operates on data
stored in memory).

Arithmetic/Logic Unit (ALU):

All processors contain an arithmetic/logic unit, which
is often referred to simply as the ALU. The ALU, as its
name implies, is that portion of the CPU hardware which

performs the arithmetic and logical operations on the binary
data.

The ALU must contain an Adder which is capable of
combining the contents of two registers in accordance with
the logic of binary arithmetic. This provision permits the
processor to perform arithmetic manipulations on the data
it obtains from memory and from its other inputs.

Using only the basic adder a capable programmer can
write routines which will subtract, multiply and divide, giv-
ing the machine complete arithmetic capabilities. In practice,
however, most ALUs provide other built-in functions, in-
cluding hardware subtraction, boolean logic operations, and
shift capabilities.

The ALU contains Flag Bits which specify certain
conditions that arise in the course of arithmetic and logical
manipulations. Flags typically include Carry, Zero, Sign, and
Parity. It is possible to program jumps which are condi-
tionally dependent on the status of one or more flags. Thus,
for example, the program may be designed to jump to a
special routine if the carry bit is set following an addition
instruction,

Control Circuitry:

The control circuitry is the primary functional unit
within a CPU. Using clock inputs, the control circuitry
maintains the proper sequence of events required for any
processing task. After an instruction is fetched and decoded,
the control circuitry issues the appropriate signals (to units
both internal and external to the CPU) for initiating the
proper processing action. Often the control circuitry will be
capable of responding to external signals, such as an inter-
rupt or wait request. An Interrupt request will cause the
control circuitry to temporarily interrupt main program
execution, jump to a special routine to service the interrupt-
ing device, then automatically return to the main program.
A Wait request is often issued by a memory or /0 element
that operates slower than the CPU. The control circuitry
will idle the CPU until the memory or 1/0 port is ready with
the data.

COMPUTER OPERATIONS

There are certain operations that are basic to almost
any computer. A sound understanding of these basic opera-
tions is a necessary prerequisite to examining the specific
operations of a particular computer.

Timing:

The activities of the central processor are cyclical. The
processor fetches an instruction, performs the operations
required, fetches the next instruction, and so on. This
orderly sequence of events requires precise timing, and the
CPU therefore requires a free running oscillator clock which
furnishes the reference for all processor actions. The com-
bined fetch and execution of a single instruction is referred
to as an Instruction Cycle. The portion of a cycle identified

with a clearly defined activity is called a State. And the inter-
val between pulses of the timing oscillator is referred to as a
Clock Period. As a general rule, one or more clock periods
are necessary for the completion of a state, and there are
several states in a cycle.

Instruction Fetch:

The first state(s) of any instruction cycle will be
dedicated to fetching the next instruction. The CPU issues a
read signal and the contents of the program counter are sent
to memory, which responds by returning the next instruc-
tion word. The first byte of the instruction is placed in the
instruction register. If the instruction consists of more than
one byte, additional states are required to fetch each byte
of the instruction. When the entire instruction is present in
the CPU, the program counter is incremented (in prepara-
tion for the next instruction fetch) and the instruction is
decoded. The operation specified in the instruction will be
executed in the remaining states of the instruction cycle.
The instruction may call for a memory read or write, an
input or output and/or an internal CPU operation, such as
a register-to-register transfer or an add-registers operation.

Memory Read:

An instruction fetch is merely a special memory read
operation that brings the instruction to the CPU’s instruc-
tion register. The instruction fetched may then call for data
to be read from memory into the CPU. The CPU again issues
aread signal and sends the proper memory address; memory
responds by returning the requested word. The data re-
ceived is placed in the accumulator or one of the other gen-
eral purpose registers (not the instruction register).

Memory Write:

A memory write operation is similar to a read except
for the direction of data flow. The CPU issues a write
signal, sends the proper memory address, then sends the data
word to be written into the addressed memory location.

Wait (memory synchronization):

As previously stated, the activities of the processor
are timed by a master clock oscillator. The clock period
determines the timing of all processing activity.

The speed of the processing cycle, however, is limited
by the memory’s Access Time. Once the processor has sent a
read address to memory, it cannot proceed until the memory
has had time to respond. Most memories are capable of
responding much faster than the processing cycle requires.
A few, however, cannot supply the addressed byte within
the minimum time established by the processor’s clock.

Therefore a processor should contain a synchroniza-
tion provision, which permits the memory to request a Wait
state, When the memory receives a read or write enable sig-
nal, it places a request signal on the processor’s READY line,
causing the CPU to idle temporarily. After the memory has

14

had time to respond, it frees the processor’'s READY line,
and the instruction cycle proceeds.

Input/Output:

Input and Output operations are similar to memory
read and write operations with the exception that a peri-
pheral 1/0 device is addressed instead of a memory location.
The CPU issues the appropriate input or output control
signal, sends the proper device address and either receives
the data being input or sends the data to be output.

Data can be input/output in either parallel or serial
form. All data within a digital computer is represented in
binary coded form. A binary data word consists of a group
of bits; each bit is either a one or a zero. Parallel 1/0O con-
sists of transferring all bits in the word at the same time,
one bit per line. Serial 1/0 consists of transferring one bit
at a time on a single line. Naturally serial 1/0 is much
slower, but it requires considerably less hardware than does
parallel 1/0.

Interrupts:

Interrupt. provisions are included on many central
processors, as a means of improving the processor’s effi-
ciency. Consider the case of a computer that is processing a
large volume of data, portions of which are to be output
to a printer. The CPU can output a byte of data within a
single machine cycle but it may take the printer the equiva-
lent of many machine cycles to actually print the character
specified by the data byte. The CPU could then remain idle
waiting until the printer can accept the next data byte. If
an interrupt capability is implemented on the computer, the
CPU can output a data byte then return to data processing.
When the printer is ready to accept the next data byte, it
can request an interrupt. When the CPU acknowledges the
interrupt, it suspends main program execution and auto-
matically branches to a routine that will output the next
data byte. After the byte is output, the CPU continues
with main program execution. Note that this is, in principle,
quite similar to a subroutine call, except that the jump is
initiated externally rather than by the program.

More complex interrupt structures are possible, in
which several interrupting devices share the same processor
but have different priority levels. Interruptive processing is
an important feature that enables maximum untilization of
a processor’s capacity for high system throughput.

Hold:

Another important feature that improves the through-
put of a processor is the Hold. The hold provision enables
Direct Memory Access (DMA) operations.

In ordinary input and output operations, the processor
itself supervises the entire data transfer. Information to be
placed in memory is transferred from the input device to the
processor, and then from the processor to the designated
memory location. In similar fashion, information that goes

from memory to output devices goes by way of the
processor.

Some peripheral devices, however, are capable of
transferring information to and from memory much faster
than the processor itself can accomplish the transfer. If any
appreciable quantity of data must be transferred to or from
such a device, then system throughput will be increased by

having the device accomplish the transfer directly. The pro-
cessor must temporarily suspend its operation during such a
transfer, to prevent conflicts that would arise if processor
and peripheral device attempted to access memory simul-
taneously. It is for this reason that a hold provision is in-
cluded on some processors.

The 8080 is a complete 8-bit parallel, central processor
unit (CPU) for use in general purpose digital computer sys-
tems. It is fabricated on a single LSI chip (see Figure 2-1).
using Intel’s n-channel silicon gate MOS process. The 8080
transfers data and internal state information via an 8-bit,
bidirectional 3-state Data Bus (Dg-D7). Memory and peri-
pheral device addresses are transmitted over a separate 16-

bit 3-state Address Bus (Ag-A15). Six timing and control
outputs (SYNC, DBIN, WAIT,WR, HLDA and INTE) eman-
ate from the 8080, while four control inputs (READY,
HOLD, INT and RESET), four power inputs (+12v, +bv,
-Bv, and GND) and two clock inputs (¢1 and ¢2) are ac-
cepted by the 8080.

\ 4
A O+—11 40 |—0 Any
GND 00— 2 39 —=0 Aqq
DA O3 38 —=0 Aq3
Dy O=—>14 37 —>0 A2
D¢ O=e—=| 5 36 F—>0 A5
D, O+—=6 35 —=0 Ag
D, Oe+—=17 34 b—0 Ag
0, o~—={s INTEL® z=p—o~
D, O+—=]9 32 —=0 Ag
o, o~—{10 8080 a1 }—on
-5V O——— 1 30 —=0 A4
RESET O—={ 12 29 b—0 A;
HOLD 0—= 13 28 }——o0 +12v
INT 0—=1 14 27 —>0 A,
%2 o—=] 15 26 |—=0 A,
INTE O<— 16 25 —>0 A
DBIN Ow— 17 24 |—=0 WAIT
WR O<+—1 18 23 j+=—o0 READY
SYNC O=+—] 19 22 f+—0 2,
+5v O— 20 21 —=0 HLDA

Figure 2-1. 8080 Photomicrograph With Pin Designations

ARCHITECTURE OF THE 8080 CPU

The 8080 CPU consists of the following functional
units:

® Register array and address logic
e Arithmetic and logic unit (ALU)
e Instruction register and control section
e Bi-directional, 3-state data bus buffer

Figure 2-2 illustrates the functional blocks within
the 8080 CPU.

Registers:

The register section consists of a static RAM array
organized into six 16-bit registers:

e Program counter (PC)

e Stack pointer (SP)

® Six 8-bit general purpose registers arranged in pairs,
referred to as B,C; D,E; and H,L

® A temporary register pair called W,Z

The program counter maintains the memory address
of the current program instruction and is incremented auto-

matically during every instruction fetch. The stack pointer
maintains the address of the next available stack location in
memory. The stack pointer can be initialized to use any
portion of read-write memory as a stack. The stack pointer
is decremented when data is ‘“pushed’’ onto the stack and
incremented when data is ““popped’’ off the stack (i.e., the
stack grows ‘‘downward’’).

The six general purpose registers can be used either as
single registers (8-bit) or as register pairs (16-bit). The
temporary register pair, W,Z, is not program addressable
and is only used for the internal execution of instructions.

Eight-bit data bytes can be transferred between the
internal bus and the register array via the register-select
multiplexer. Sixteen-bit transfers can proceed between the
register array and the address latch or the incrementer/
decrementer circuit. The address latch receives data from
any of the three register pairs and drives the 16 address
output buffers (Ag-A15), as well as the incrementer/
decrementer circuit. The incrementer/decrementer circuit
receives data from the address latch and sends it to
the register array. The 16-bit data can be incremented or
decremented or simply transferred between registers.

D,-D, BI-DIRECTIONAL
DATA BUS
(88BIT) (8BIT)
INTERNAL DATA BUS INTERNAL DATA BUS
1 3
\ AN
\NZ
ACCUMULATOR TEMP. REG. INSTRUCTION
(B)I l (S)I REGISTER (g) MULTIPLEXER
\ w (8) z (8)
FLAG () TEMP REG
1 FLIP-FLOPS] JEMPRES. .
ACCUMULATOR . B ® c_®
LATCH (8) , Q REG. REG.
INSTRUCTION =] T ®
N ARITHMETIC @ D
} I LoGic DEgﬂgER a REG. REG.
UNIT MACHINE ¥ w H @ L @ | _REGISTER
(ALU) CYCLE @ REG. REG. ARRAY
. @) ENCODING] 1e)
[- x STACK POINTER
Y
(16)
; ? PROGRAM COUNTER
DECIMAL INCREMENTER/DECREMENTER
ADJUST [ADDRESS LATCH (16)
<
TIMING
- AND
CONTROL |]
POWER | — +12V I ADDRESS BUFFER “F’I
SUPPLIES | — 45v DATABUS INTERRUPT HOLD WAIT e Z
WRITE CONTROL CONTROL CONTROL CONTROL SYNC CLOCKS
— -5V -
= T T
WR DBIN INTE INT HOLD HOLDWAIT | SYNC ¢1 ¢2 RESET A - Ay
AcK READY ADDRESS BUS

Figure 2-2. 8080 CPU Functional Block Diagram

Arithmetic and Logic Unit (ALU):

The ALU contains the following registers:

e An 8-bit accumulator
e An 8-bit temporary accumulator (ACT)

e A 5-bit flag register: zero, carry, sign, parity and
auxiliary carry

e An 8-bit temporary register (TMP)

Arithmetic, logical and rotate operations are per-
formed in the ALU. The ALU is fed by the temporary
register (TMP) and the temporary accumulator (ACT) and
carry flip-flop. The result of the operation can be trans-
ferred to the internal bus or to the accumulator; the ALU
also feeds the flag register.

The temporary register (TMP) receives information
from the internal bus and can send all or portions of it to
the ALU, the flag register and the internal bus.

The accumulator (ACC) can be loaded from the ALU
and the internal bus and can transfer data to the temporary
accumulator (ACT) and the internal bus. The contents of
the accumulator (ACC) and the auxiliary carry flip-flop can
be tested for decimal correction during the execution of the
DAA instruction (see Chapter 4).

Instruction Register and Control:

During an instruction fetch, the first byte of an in-
struction (containing the OP code) is transferred from the
internal bus to the 8-bit instruction register.

The contents of the instruction register are, in turn,
available to the instruction decoder. The output of the
decoder, combined with various timing signals, provides
the control signals for the register array, ALU and data
buffer blocks. In addition, the outputs from the instruction
decoder and external control signals feed the timing and
state control section which generates the state and cycle
timing signals.

Data Bus Buffer:
This 8-bit bidirectional 3-state buffer is used to

isolate the CPU’s internal bus from the external data bus.

(Do through D7). In the output mode, the internal bus
content is loaded into an 8-bit latch that, in turn, drives the
data bus output buffers. The output buffers are switched
off during input or non-transfer operations.

During the input mode, data from the external data bus
is transferred to the internal bus. The internal bus is pre-
charged at the beginning of each internal state, except for
the transfer state (T3—described later in this chapter).

2-3

THE PROCESSOR CYCLE

An instruction cycle is defined as the time required
to fetch and execute an instruction. During the fetch, a
selected instruction (one, two or three bytes) is extracted
from memory and deposited in the CPU’s instruction regis-
ter. During the execution phase, the instruction is decoded
and translated into specific processing activities.

Every instruction cycle consists of one, two, three,
four or five machine cycles. A machine cycle is required
each time the CPU accesses memory or an |/O port. The
fetch portion of an instruction cycle requires one machine
cycle for each byte to be fetched. The duration of the execu-
tion portion of the instruction cycle depends on the kind
of instruction that has been fetched. Some instructions do
not require any machine cycles other than those necessary
to fetch the instruction; other instructions, however, re-
quire additional machine cycles to write or read data to/
from memory or 1/O devices. The DAD instruction is an
exception in that it requires two additional machine cycles
to complete an internal register-pair add (see Chapter 4).

Each machine cycle consists of three, four or five
states. A state is the smallest unit of processing activity and
is defined as the interval between two successive positive-
going transitions of the ¢1 driven clock pulse. The 8080
isdriven by a two-phase clock oscillator. All processing activ-
ities are referred to the period of this clock. The two non-
overlapping clock pulses, labeled ¢1 and ¢2, are furnished
by external circuitry. It is the ¢1 clock pulse which divides
each machine cycle into states. Timing logic within the
8080 uses the clock inputs to produce a SYNC pulse,
which identifies the beginning of every machine cycle. The
SYNC pulse is triggered by the low-to-high transition of ¢2,
as shown in Figure 2-3.

FIRST STATE OF
*EVERY MACHINE
CYCLE

o _ Y \ /—___/__
o |/ N/
SYNC _| / \

*SYNC DOES NOT OCCUR IN THE SECOND AND THIRD MACHINE
CYCLES OF A DAD INSTRUCTION SINCE THESE MACHINE CYCLES
ARE USED FOR AN INTERNAL REGISTER-PAIR ADD.

Figure 2-3.¢91, 2 And SYNC Timing

There are three exceptions to the defined duration of
a state. They are the WAIT state, the hold (HLDA) state
and the halt (HLTA) state, described later in this chapter.
Because the WAIT, the HLDA, and the HLTA states depend
upon external events, they are by their nature of indeter-
minate length. Even these exceptional states, however, must

be synchronized with the pulses of the driving clock. Thus,
the duration of all states are integral multiples of the clock
period.

To summarize then, each clock period marks a state;
three to five states constitute a machine cycle; and one to
five machine cycles comprise an instruction cycle. A full
instruction cycle requires anywhere from four to eight-
teen states for its completion, depending on the kind of in-

struction involved.

Machine Cycle ldentification:

With the exception of the DAD instruction, there is
just one consideration that determines how many machine
cycles are required in any given instruction cycle: the num-
ber of times that the processor must reference a memory
address or an addressable peripheral device, in order to
fetch and execute the instruction. Like many processors,
the 8080 is so constructed that it can transmit only one
address per machine cycle. Thus, if the fetch and execution
of an instruction requires two memory references, then the
instruction cycle associated with that instruction consists of
two machine cycles. If five such references are called for,
then the instruction cycle contains five machine cycles.

Every instruction cycle has at least one reference to
memory, during which the instruction is fetched. An in-
struction cycle must always have a fetch, even if the execu-
tion of the instruction requires no further references to
memory. The first machine cycle in every instruction cycle
is therefore a FETCH. Beyond that, there are no fast rules.
It depends on the kind of instruction that is fetched.

Consider some examples. The add-register (ADD r)
instruction is an instruction that requires only a single
machine cycle (FETCH) for its completion. In this one-byte
instruction, the contents of one of the CPU’s six general
purpose registers is added to the existing contents of the
accumulator. Since all the information necessary to execute
the command is contained in the eight bits of the instruction
code, only one memory reference is necessary. Three states
are used to extract the instruction from memory, and one
additional state is used to accomplish the desired addition.
The entire instruction cycle thus requires only one machine
cycle that consists of four states, or four periods of the ex-
ternal clock.

Suppose now, however, that we wish to add the con-
tents of a specific memory location to the existing contents
of the accumulator (ADD M). Although this is quite similar
in principle to the example just cited, several additional
steps will be used. An extra machine cycle will be used, in
order to address the desired memory location.

The actual sequence is as follows. First the processor
extracts from memory the one-byte instruction word ad-
dressed by its program counter. This takes three states.
The eight-bit instruction word obtained during the FETCH
machine cycle is deposited in the CPU’s instruction register
and used to direct activities during the remainder of the
instruction cycle. Next, the processor sends out,as an address,

the contents of its H and L registers. The eight-bit data
word returned during this MEMORY READ machine cycle
is placed in a temporary register inside the 8080 CPU. By
now three more clock periods (states) have elapsed. In the
seventh and final state, the contents of the temporary regis-
ter are added to those of the accumulator. Two machine
cycles, consisting of seven states in all, complete the
“ADD M’’ instruction cycle.

At the opposite extreme is the save H and L registers
(SHLD) instruction, which requires five machine cycles.
During an ““SHLD" instruction cycle, the contents of the
processor’s H and L registers are deposited in two sequen-
tially adjacent memory locations; the destination is indi-
cated by two address bytes which are stored in the two
memory locations immediately following the operation code
byte. The following sequence of events occurs:

(1) A FETCH machine cycle, consisting of four
states. During the first three states of this
machine cycle, the processor fetches the instruc-
tion indicated by its program counter. The pro-
gram counter is then incremented. The fourth

state is used for internal instruction decoding.

A MEMORY READ machine cycle, consisting
of three states. During this machine cycle, the
byte indicated by the program counter is read
from memory and placed in the processor’s
Z register. The program counter is incremented
again.

Another MEMORY READ machine cycle, con-
sisting of three states, in which the byte indica-
ted by the processor’s program counter is read
from memory and placed in the W register. The
program counter is incremented, in anticipation
of the next instruction fetch.

A MEMORY WRITE machine cycle, of three
states, in which the contents of the L register
are transferred to the memory location pointed
to by the present contents of the W and Z regis-
ters. The state following the transfer is used to
increment the W,Z register pair so that it indi-
cates the next memory location to receive data.

A MEMORY WRITE machine cycle, of three
states, in which the contents of the H register
are transferred to the new memory location
pointed to by the W, Z register pair.

(2)

(3

(4)

(5)

In summary, the “SHLD" instruction cycle contains
five machine cycles and takes 16 states to execute.

Most instructions fall somewhere between the ex-
tremes typified by the “ADD r"” and the “SHLD’ instruc-
tions. The input (INP) and the output (OUT) instructions,
for example, require three machine cycles: a FETCH, to
obtain the instruction; a MEMORY READ, to obtain the
address of the object peripheral; and an INPUT or an OUT-
PUT machine cycle, to complete the transfer.

While no one instruction cycle will consist of more
then five machine cycles, the following ten different types
of machine cycles may occur within an instruction cycle:

(1)
(2)

FETCH (M1)
MEMORY READ

(3) MEMORY WRITE

(4) STACK READ

(6) STACKWRITE

(6) INPUT

(7) OUTPUT

(8) INTERRUPT

(9) HALT

(10) HALTeINTERRUPT

The machine cycles that actually do occur in a par-
ticular instruction cycle depend upon the kind of instruc-
tion, with the overriding stipulation that the first machine
cycle in any instruction cycle is always a FETCH.

The processor identifies the machine cycle in prog-
ress by transmitting an eight-bit status word during the first
state of every machine cycle. Updated status information is
presented on the 8080’s data lines (Dg-D7), during the
SYNC interval. This data should be saved in latches, and
used to develop control signals for external circuitry. Table
2-1 shows how the positive-true status information is dis-
tributed on the processor’s data bus.

Status signals are provided principally for the control
of external circuitry. Simplicity of interface, rather than
machine cycle identification, dictates the logical definition
of individual status bits. You will therefore observe that
certain processor machine cycles are uniquely identified by
a single status bit, but that others are not. The M1 status
bit (Dg), for example, unambiguously identifies a FETCH
machine cycle. A STACK READ, on the other hand, is
indicated by the coincidence of STACK and MEMR sig-
nals. Machine cycle identification data is also valuable in
the test and de-bugging phases of system development.
Table 2-1 lists the status bit outputs for each type of
machine cycle.

State Transition Sequence:

Every machine cycle within an instruction cycle con-
sists of three to five active states (referred toas T1, T2, T3,
T4, Tg or Tyy). The actual number of states depends upon
the instruction being executed, and on the particular ma-
chine cycle within the greater instruction cycle. The state
transition diagram in Figure 2-4 shows how the 8080 pro-
ceeds from state to state in the course of a machine cycle.
The diagram also shows how the READY, HOLD, and
INTERRUPT lines are sampled during the machine cycle,
and how the conditions on these lines may modify the

25

basic transition sequence. In the present discussion, we are
concerned only with the basic sequence and with the
READY function. The HOLD and INTERRUPT functions
will be discussed later.

The 8080 CPU does not directly indicate its internal
state by transmitting a ‘’state control” output during
each state; instead, the 8080 supplies direct control output
(INTE, HLDA, DBIN, WR and WAIT) for use by external
circuitry.

Recall that the 8080 passes through at least three
states in every machine cycle, with each state defined by
successive low-to-high transitions of the ¢1 clock. Figure
2-5 shows the timing relationships in a typical FETCH
machine cycle. Events that occur in each state are referenced
to transitions of the ¢1 and ¢2 clock pulses.

The SYNC signal identifies the first state (T1) in
every machine cycle. As shown in Figure 2-5, the SYNC
signal is related to the leading edge of the ¢2 clock. There is
a delay (tpc) between the low-to-high transition of ¢2 and
the positive-going edge of the SYNC pulse. There also is a
corresponding delay (also tpc) between the next ¢2 pulse
and the falling edge of the SYNC signal. Status information
is displayed on DQ-D7 during the same ¢2 to ¢2 interval.
Switching of the status signals is likewise controlled by ¢2.

The rising edge of ¢2 during T also loads the pro-
cessor’s address lines (AQ-A15). These lines become stable
within a brief delay (tpp) of the ¢2 clocking pulse, and
they remain stable until the first ¢2 pulse after state T3.
This gives the processor ample time to read the data re-
turned from memory.

Once the processor has sent an address to memory,
there is an opportunity for the memory to request a WAIT.
This it does by pulling the processor’'s READY line low,
prior to the ‘“Ready set-up” interval (tgg) which occurs
during the ¢2 pulse within state T2 or Ty. As long as the
READY line remains low, the processor will idle, giving the
memory time to respond to the addressed data request.
Refer to Figure 2-5.

The processor responds to a wait request by entering
an alternative state (Tyy) at the end of T9, rather than pro-
ceeding directly to the T3 state. Entry into the Tyy state is
indicated by a WAIT signal from the processor, acknowledg-
ing the memory’s request. A low-to-high transition on the
WAIT line is triggered by the rising edge of the ¢1 clock and
occurs within a brief delay (tpc) of the actual entry into
the Tyy state.

A wait period may be of indefinite duration. The pro-
cessor remains in the waiting condition until its READY line
again goes high. A READY indication must precede the fall-
ing edge of the ¢2 clock by a specified interval (trg), in
order to guarantee an exit from the Tyy state. The cycle
may then proceed, beginning with the rising edge of the
next ¢1 clock. A WAIT interval will therefore consist of an
integral number of Tyy states and will always be a multiple
of the clock period.

Instructions for the 8080 require from one to five machine
cycles for complete execution. The 8080 sends out 8 bit of
status information on the data bus at the beginning of each
machine cycle (during SYNC time). The following table defines
the status information.

STATUS INFORMATION DEFINITION

Data Bus
Symbols Bit
INTA* Do

Definition
Acknowledge signal for INTERRUPT re-
quest. Signal should be used to gate a re-

=)

8080 STATUS LATCH

alo|a|w|w]eo|o

start instruction onto the data bus when 17
. DBIN is active.
WO D, Indicates that the operation in the current STaTus
machine cycle will be_ a WRITE memory 35, 51
or OUTPUT function (WO = 0).Otherwise, ? g
a READ memory or INPUT operation will 3 [0~
be executed. :: 212 %
STACK D, Indicates that the address bus holds the 20 [19—
pushdown stack address from the Stack cLock GEn. HoTTTL) 2] (21
Pointer. & DRIVER [e]5s; wo o3,
HLTA D3 Acknowledge signal for HALT instruction. ENENE
ouT Dg4 Indicates that the address bus contains the]
address of an output device and the data
bus will contain the output data when Vee
WR is active.
M, Dg Provides a signal to indicate that the CPU
is in the fetch cycle for the first byte of n T2
an instruction. a P\ N\
INP* Dg Indicates that the address bus contains the
address of an input device and the input 2 /N S\
data should be placed on the data bus SYNC / \
when DBIN is active. _ o
MEMR* D; Designates that the data bus will be used DATA —_—
for memory read data. __
*These three status bits can be used to control STATUS
the flow of data onto the 8080 data bus.
STATUS WORD CHART
TYPE OF MACHINE CYCLE
I .]
g &
4 Q)
5 S/& /8
& : & /s & « /& @Q’ &
Q N S
g/ 8§88 /8/S/&/8/&//E/S/ /S
& T /\\Q N S & N I/ S/ S S & R
s/ &8 /S/S/§/5/8/8/8/8/E/Ss
S/ £ /8/8//5/5/$/E/8/ 5SS
S /&/5/8/%/&/)S/8§ &/ &/
N L/ /&
§ S
® STATUSWORD
VIO |®|® @ | ©
Do INTA 0 0 0 0 0 0 0 1 0 1
D1 | WO 1T [1]Jo]l1t|lof1]o]1 1 1
D2 STACK 0 0 0 1 1 0 0 0 0 0
D3 HLTA 0 0 0 0 0 0 0 0 1 1
D4 ouT 0 0 0 0 0 0 1 0 0 0
Ds M1 1 0 0 0 0 0 0 1 0 1
De INP 0 0 0 0 0 1 0 0 0 0
D7 MEMR 1 1 0 1 0 0 0 0 1 0

INTA
W0
STACK
HLTA
out
L]
INP
MEMR

DBIN

Table 2-1. 8080 Status Bit Definitions

RESET

7

READY + HLTA

T2
o

YES
HLTA
READY « HLTA
NO
READY Tw
READY
--~‘_, SET INTERNAL
<LD/ HOLD F/F
<:%:>
I
I
|
) (3)
"HoLo
:MODE
(:é) I
|
I
%> ______ i
1S
INTERNAL YES
HOLD F/F
SET?
NO
INST
EXECUTION HOLD
COMPLETED MODE HOLD
HOLD

NO

YES

SET INTERNAL

RESET INTERNAL
HOLD F/F

].__

INT « INTE
HOLD

SET INTERNAL
HOLD F/F

l(3)

HOLD
MODE

HOLD

I
[e]
=
o

RESET INTERNAL
HOLD F/F

RESET

HLTA

INT F/F

()\NTE F/F IS RESET IF INTERNAL INT F/F 1S SET
2)NTERNAL INT F/F IS RESET IF INTE F/F IS RESET.
(ISEE PAGE 2-13.

Figure 2-4. CPU State Transition Diagram

2-7

The events that take place during the T3 state are
determined by the kind of machine cycle in progress. In a
FETCH machine cycle, the processor interprets the data on
its data bus as an instruction, Duringa MEMORY READ or
a STACK READ, data on this bus is interpreted as a data
word. The processor outputs data on this bus during a
MEMORY WRITE machine cycle. During 1/0 operations,
the processor may either transmit or receive data, de-
pending on whether an OUTPUT or an INPUT operation
is involved.

Figure 2-6 illustrates the timing that is characteristic
of a data input operation. As shown, the low-to-high transi-
tion of ¢2 during T2 clears status information from the pro-
cessor’s data lines, preparing these lines for the receipt of
incoming data. The data presented to the processor must
have stabilized prior to both the "“¢1—data set-up’’ interval
(tpg1), that precedes the falling edge of the ¢1 pulse defin-
ing state T3, and the “¢—data set-up’’ interval (tpg2),
that precedes the rising edge of ¢ in state T3. This same

data must remain stable during the “‘data hold” interval
(tpH) that occurs following the rising edge of the ¢2 pulse.
Data placed on these lines by memory or by other external
devices will be sampled during T3.

During the input of data to the processor, the 8080
generates a DBIN signal which should be used externally to
enable the transfer. Machine cycles in which DBIN is avail-
able include: FETCH, MEMORY READ, STACK READ,
and INTERRUPT. DBIN is initiated by the rising edge of ¢
during state T2 and terminated by the corresponding edge of
¢2 during T3. Any Tyy phases intervening between T2 and
T3 will therefore extend DBIN by one or more clock
periods.

Figure 2-7 shows the timing of a machine cycle in
which the processor outputs data. Output data may be des-
tined either for memory or for peripherals. The rising edge
of @2 within state T2 clears status information from the
CPU’s data lines, and loads in the data which is to be output
to external devices. This substitution takes place within the

L T2 Tw T3 Ta Ts
(4} ’ ~ V"\
4
Ul 7 I \\ I \u
-
Aiso / u UNKNOWN
D7.0 X L—» WRITE MODE FLOATING
—— NS TN e e p——— — — ——— - - -
_/ FLOATING
1
DATA T READ MODE
STABLE
SYNC / 1
READY /
WAIT / \
DBIN] / \
WR
STATUS
INFORMATION
DATA
Aiso SAMPLE READY OPTIONAL FETCH DATA OPTIONAL
MEMORY ADDRESS HOLD AND HALT OR
OR HALT INSTRUCTION INSTRUCTION
1/0 DEVICE NUMBER OR OR EXECUTION
D70 MEMORY WRITE DATA IF REQUIRED
STATUS INFORMATION ACCESS TIME
INTA out ADJUST
HLTA wo
MEMR My
INP STACK

NOTE: @ Refer to Status Word Chart on Page 2-6.

Figure 2-5. Basic 8080 Instruction Cycle

M1 ™
T T2 T3 Ta T T T2 T3
" N
|
«l L\ 'l M\
- l_ - — 1/0 DEVICE NUMBER
teo S BYTE o X INPUT DATA TO
ONE _ ACCUMULATOR
D70 -—/ ‘\, - _;r -F.L-OEI'H\TG T r / ‘\. KR _I'
SYNC a , \ r /____-\
DBIN [\ W, L
READY ’
WAIT “0“
WR 1
WFORMATION ® ®

NOTE: @ Refer to Status Word Chart on Page 2-6.

Figure 2-6. Input Instruction Cycle

[2]

%2

As.0

Dr.0

SYNC

DBIN

READY

WAIT

STATUS
INFORMATION

My

My

T

T2

T3

T

T3 T

I VY A VY B

LT

BYTE

| W E——

FLOATING| [

I VI A VY

\@KNOWN

1/0 DEVICE
NUMBER

\

X | AccumuLATOR \

/
[T\

ATLL

®

NOTE: @ Refer to Status Word Chart on Page 2-6.

Figure 2-7. Output Instruction Cycle

29

“data output delay” interval (tpp) following the ¢ clock’s
leading edge. Data on the bus remains stable throughout
the remainder of the machine cycle, until replaced by up-
dated status information in the subsequent T { state. Observe
that a READY signal is necessary for completion of an
OUTPUT machine cycle. Unless such an indication is pres-
ent, the processor enters the Tyy state, following the T2
state. Data on the output lines remains stable in the
interim, and the processing cycle will not proceed until
the READY line again goes high.

The 8080 CPU generates a WR output for the syn-
chronization of external transfers, during those machine
cycles in which the processor outputs data. These include
MEMORY WRITE, STACK WRITE, and OUTPUT. The
negative-going leading edge of WR is referenced to the rising
edge of the first ¢ clock pulse following T9, and occurs
within a brief delay (tpc) of that event. WR remains low
until re-triggered by the leading edge of ¢¢ during the
state following T3. Note that any Tyy states intervening
between To and T3 of the output machine cycle will neces-

sarily extend _N—R, in much the same way that DBIN is af-
fected during data input operations.

All processor machine cycles consist of at least three
states: T1, T2, and T3 as just described. If the processor has
to wait for a response from the peripheral or memory with
which it is communicating, then the machine cycle may
also contain one or more Tyy states. During the three basic
states, data is transferred to or from the processor.

After the T3 state, however, it becomes difficult to

- generalize. T4 and Tg states are available, if the execution

of a particular instruction requires them. But not all machine
cycles make use of these states. It depends upon the kind of
instruction being executed, and on the particular machine
cycle within the instruction cycle. The processor will termi-
nate any machine cycle as soon as its processing activities
are completed, rather than proceeding through the T4 and
Tp states every time. Thus the 8080 may exit a machine
cycle following the T3, the T4, or the Tg state and pro-
ceed directly to the T1 state of the next machine cycle.

STATE ASSOCIATED ACTIVITIES
LE| A memory address or /O device number is
placed on the Address Bus (A15.0); status
information is placed on Data Bus (D7.q).
T2 The CPU samples the READY and HOLD in-
puts and checks for halt instruction.
TW Processor enters wait state if READY is low
(optional) or if HALT instruction has been executed.
T3 An instruction byte (FETCH machine cycle),
data byte (MEMORY READ, STACK READ)
or interrupt instruction (INTERRUPT machine
cycle) is input to the CPU from the Data Bus;
or a data byte (MEMORY WRITE, STACK
WRITE or OUTPUT machine cycle) is output
onto the data bus.
T4 States T4 and Tg are available if the execu-
T5 tion of a particular instruction requires them;
(optional) if not, the CPU may skip one or both of
them. T4 and Tg are only used for internal
processor operations.

Table 2-2. State Definitions

INTERRUPT SEQUENCES

The 8080 has the built-in capacity to handle external
interrupt requests. A peripheral device can initiate an inter-
rupt simply by driving the processor’s interrupt (INT) line
high.

The interrupt (INT) input is asynchronous, and a
request may therefore originate at any time during any
instruction cycle. Internal logic re-clocks the external re-
quest, so that a proper correspondence with the driving
clock is established. As Figure 2-8 shows, an interrupt
request (INT) arriving during the time that the interrupt
enable line (INTE) is high, acts in coincidence with the ¢2
clock to set the internal interrupt latch. This event takes
place during the last state of the instruction cycle in which
the request occurs, thus ensuring that any instruction in
progress is completed before the interrupt can be processed.

The INTERRUPT machine cycle which follows the
arrival of an enabled interrupt request resembles an ordinary
FETCH machine cycle in most respects. The M1 status bit
is transmitted as usual during the SYNC interval. It is
accompanied, however, by an INTA status bit (Dg) which
acknowledges the external request. The contents of the
program counter are latched onto the CPU’s address lines
during T1, but the counter itself is not incremented during
the INTERRUPT machine cycle, as it otherwise would be.

In this way, the pre-interrupt status of the program counter
is preserved, so that data in the counter may be restored by
the interrupted program after the interrupt request has been
processed.

The interrupt cycle is otherwise indistinguishable from
an ordinary FETCH machine cycle. The processor itself
takes no further special action. It is the responsibility of the
peripheral logic to see that an eight-bit interrupt instruction
is “/jammed’’ onto the processor’s data bus during state T3.
In a typical system, this means that the data-in bus from
memory must be temporarily disconnected from the pro-
cessor’s main data bus, so that the interrupting device can
command the main bus without interference.

The 8080’s instruction set provides a special one-byte
call which facilitates the processing of interrupts (the ordi-
nary program Call takes three bytes). This is the RESTART
instruction (RST). A variable three-bit field embedded in
the eight-bit field of the RST enables the interrupting device
to direct a Call to one of eight fixed memory locations. The
decimal addresses of these dedicated locations are: 0, 8, 16,
24, 32, 40, 48, and 56. Any of these addresses may be used
to store the first instruction(s) of a routine designed to
service the requirements of an interrupting device. Since
the (RST) is a call, completion of the instruction also
stores the old program counter contents on the STACK.

My

M2 M3

T3 T T2 T3

Ta Ts T T2 T3 Ty T2 T3

A1s.0 PC-1 / PC

/
| Y A B

RST

—— ——— g —

SP-1 SP-2

PCH PCL

><

Do
(INTA)

SYNC / \

n
el TUJT W WS srury ryvry sy ryry
A
A
B

DBIN

J

WR

RETURN M, , \

V-

(INTERNAL) =

INTE \

wr_| f

INT F/F
(INTERNAL) o

INHIBIT STORE OF \
PC+1 (INTERNAL)

STATUS
INFORMATION

J

.16) A®

NOTE: @ Refer to Status Word Chart on Page 2-6.

Figure 2-8. Interrupt Timing

2-11

Mn Mn+1

T T2 Tw T3 (Ta)* (Ts)* T T T2

U i

i
! ‘ |
l |
Ats0 | l\g i
1 l FLOATING
l/

.

HOLD
REQUEST

o/ - I
/

HOLD | [: \

READY /

HOLD F/F
INTERNAL I \

HLDA i

*T4 AND Ts OPERATION CAN BE
DONE INTERNALLY.

I I

(1) SEE ATTACHED ELECTRICAL CHARACTERISTICS.

Figure 2-9. HOLD Operation (Read Mode)

Mn M n+1 ‘ M n+2
T3 Ta T T, T3 T
o N
%2 [\ /] \ / \] L [\ / \ /U
| e
Ao X D I].OAT(NG J
oo [T] X ! A
WR \ /
REQTJ%;? 47 \
HOLD _| / \ I
READY
INTERNAL / \
HLDA /
WRITE DATA

Figure 2-10. HOLD Operation (Write Mode)

2-12

HOLD SEQUENCES

The 8080A CPU contains provisions for Direct Mem-
ory Access (DMA) operations. By applying a HOLD to the
appropriate control pin on the processor, an external device
can cause the CPU to suspend its normal operations and re-
linquish control of the address and data busses. The proces-
sor responds to a request of this kind by floating its address
to other devices sharing the busses. At the same time, the
processor acknowledges the HOLD by placing a high on its
HLDA outpin pin. During an acknowledged HOLD, the
address and data busses are under control of the peripheral
which originated the request, enabling it to conduct mem-
ory transfers without processor intervention.

Like the interrupt, the HOLD input is synchronized
internally. A HOLD signal must be stable prior to the ‘“Hold
set-up’’ interval (tyg), that precedes the rising edge of ¢,.

Figures 2-9 and 2-10 illustrate the timing involved in
HOLD operations. Note the delay between the asynchronous
HOLD REQUEST and the re-clocked HOLD. As shown in
the diagram, a coincidence of the READY, the HOLD, and
the ¢ clocks sets the internal hold latch. Setting the latch
enables the subsequent rising edge of the ¢ clock pulse to
trigger the HLDA output.

Acknowledgement of the HOLD REQUEST precedes
slightly the actual floating of the processor’s address and
data lines. The processor acknowledges a HOLD at the begin-
ning of T3, if a read or an input machine cycle is in progress
(see Figure 2-9). Otherwise, acknowledgement is deferred
until the beginning of the state following T3 (see Figure
2-10). In both cases, however, the HLDA goes high within
a specified delay (tpc) of the rising edge of the selected ¢1
clock pulse. Address and data lines are floated within a
brief delay after the rising edge of the next ¢2 clock pulse.
This relationship is also shown in the diagrams.

To all outward appearances, the processor has suspend-
ed its operations once the address and data busses are floated.
Internally, however, certain functions may continue. If a
HOLD REQUEST is acknowledged at T3, and if the pro-
cessor is in the middle of a machine cycle which requires
four or more states to complete, the CPU proceeds through
T4 and Ty before coming to a rest. Not until the end of the
machine cycle is reached will processing activities cease.
Internal processing is thus permitted to overlap the external
DMA transfer, improving both the efficiency and the speed
of the entire system.

The processor exits the holding state through a
sequence similar to that by which it entered. A HOLD
REQUEST is terminated asynchronously when the external
device has completed its data transfer. The HLDA output

2-13

returns to a low level following the leading edge of the next
@1 clock pulse. Normal processing resumes with the ma-
chine cycle following the last cycle that was executed.

HALT SEQUENCES

When a halt instruction (HLT) is executed, the CPU
enters the halt state (Tyyy) after state T2 of the next ma-
chine cycle, as shown in Figure 2-11. There are only three
ways in which the 8080 can exit the halt state:

e A high on the RESET line will always reset the
8080 to state Tq; RESET also clears the program
counter.

A HOLD input will cause the 8080 to enter the
hold state, as previously described. When the
HOLD line goes low, the 8080 re-enters the halt
state on the rising edge of the next ¢1 clock
pulse.

An interrupt (i.e., INT goes high while INTE is
enabled) will cause the 8080 to exit the Halt state
and enter state Tq on the rising edge of the next
¢1 clock pulse. NOTE: The interrupt enable (INTE)
flag must be set when the halt state is entered;
otherwise, the 8080 will only be able to exit via a
RESET signal.

Figure 2-12 illustrates halt sequencing in flow chart
form.

START-UP OF THE 8080 CPU

When power is applied initially to the 8080, the pro-
cessor begins operating immediately. The contents of its
program counter, stack pointer, and the other working regis-
ters are naturally subject to random factors and cannot be
specified. For this reason, it will be necessary to begin the
power-up sequence with RESET.

An external RESET signal of three clock period dura-
tion (minimum) restores the processor’s internal program
counter to zero. Program execution thus begins with mem-
ory location zero, following a RESET. Systems which re-
quire the processor to wait for an explicit start-up signal
will store a halt instruction (El, HLT) in the first two loca-
tions. A manual or an automatic INTERRUPT will be used
for starting. In other systems, the processor may begin ex-
ecuting its stored program immediately. Note, however, that
the RESET has no effect on status flags, or on any of the
processor’s working registers (accumulator, registers, or
stack pointer). The contents of these registers remain inde-
terminate, until initialized explicitly by the program.

01

02

A1s0

D70

SYNC

DBIN

WAIT

STATUS
INFORMATION

M2

T

T2

T3

T4

T

T2

TwH TwH

] L

/] L/ U

NOTE: (N) Refer to Status Word Chart on Page 2-6

Figure 2-11. HALT Timing

TO STATE
TworT3

TO STATE

T

T2

HALT

HALT STATE

TO STATE Ty

!

HOLD STATE

NO

Figure 2-12. HALT Sequence Flow Chart.

2-14

Tn Tn+1 Tn+2 Tn+3 Tn+(i-1) Tn+i T T2

LY W N e Y e W Y VY O A W W i

149

P m—mm e — ==
Ars: / Y -
0 > FLOATING - re=o
I
e s IS S S [-
ol / ® T URoR_
b)Y
RESET | (1) U \
,
INTERNAL R
RESET
SYNC Y / i
2 —
DBIN ” / '
|

»
W

STATUS ! @

INFORMATION |

(IWHEN RESET SIGNAL IS ACTIVE, ALL OF CONTROL OUTPUT SIGNALS WILL BE RESET IMMEDIATELY OR SOME
CLOCK PERIODS LATER. THE RESET SIGNAL MUST BE ACTIVE FOR A MINIMUM OF THREE CLOCK CYCLES. IN
THE ABOVE DIAGFUI\M N AND | MAY IBE ANY INTEGERI.

1

| 1 !

NOTE: (N) Refer to Status Word Chart on Page 2.

Figure 2-13. Reset.

M,
TwH Twh TwH Twr TwH Twh Twx T T2

o L)
e [\ —\u —un T\

.
]

LOATING -j

[G T R S P Y N | U [U P | U I U -

o B A v
SYNC T\ |
DBIN I_L_

HOLD
HOLD F/F el
(INTERNAL) \ [/

HLDA

Ao FLOATING

Iy /I

INTE \

INT / INHIBIT INHIBIT
INT HOLD

INT F/F
(INTERNAL)

IWNEORMATION ®

NOTE: @ Refer to Status Word Chart on Page 2-6.

Figure 2-14. Relation between HOLD and INT in the HALT State.

2-15

MNEMONIC OP CODE mil1] M2
D7DgDsD4 | D3D2DqDg T T2(2 T3 T4 T5 ™ T212 T3
MOV r1,r2 010D | Ds s s | Pcour | PC=PC+l [INSTSTMP/IR | (SSSI-TMP (TMP)~DDD . % =
STATUS B e
MOV r, M 010D (D110 x(3] HL OUT DATA—{»DDD
STATUSI6]
MOV M, r 0111 [osss (sSS}-TMP oo (TMP)—{»DATA BUS
SPHL 1 11 1001 (HL) . e
MVI r, data o0DD |[D110 X B2 —{»DDDD
MVI M, data 0011|0110 X B2—»-TMP
LXI rp, data 0OO0RP |0O0O 1 X PC=PC+1 B2—{»r1
LDA addr 0011 1010 X PC=PC+1 B2—»-2
STA addr 0011|0010 X PC=PC+1 B2—>Z
LHLD addr 0010 |[1010 X PC=PC+1 B2—-Z
SHLD addr 0010 |[0010 X PC OUT PC=PC+1 B2—{»-Z
STATUSIE!
LDAX rpl4] 0OO0ORP |[1010 X p OUT DATA—{»A
STATUSIE)
STAX rpl4) 0OO0RP |0O010 X p OUT (A) —l»-DATA BUS
STATUS!?)
XCHG 1110 [1011 (HL)}—(DE) ' ol
i el
ADD 1000 |0SSS (SSS)-TMP)] (ACT)+(TMP)=>A
(A)-ACT o
ADD M 1000 0110 (A)>ACT HL OUT DATA—l»-TMP
STATUSI6!
ADI data 1100 [0110 (A)>ACT PC OUT PC=PC+1 B2—|»TMP
STATUSIE]
ADCr 1000 |18SsSS (SSS)-TMP €] (ACT)+(TMP)+CY—A L
(Al>ACT -
ADCM 1000 | 1110 (A)-ACT HL OUT DATA—{»-TMP
STATUSIE!
ACI data 1100 | 1110 (A}>ACT PCOUT PC=PC+1 B2—{»TMP
STATUSIE)
SuBr 1001 |0sss (SSS)I-TMP 0] (ACT)-(TMP)—A e -
(A)>ACT o :
SUB M 1001|0110 (A)-ACT HLOUT DATA—{»TMP
STATUSIE!
SUI data 1101|0110 (A)>ACT PC OUT PC=PC+1 B2—{»TMP
STATUSIE!
SBB 1001 1sss (SSS)-TMP] (ACT)-(TMP)-CY—A
(A)+ACT
SBB M 1001 1110 (A)-ACT HL OUT DATA
| staTuslel
SBI data 1101 1110 (A)>ACT PC OUT PC=PC+1 B2—{»-TMP
STATUSI6!
INR r oobDD|D100O (DDD)}-TMP ALU-DDD il o
(TMP) + 1-ALU L e
INR M 0011|0100 X HL OUT DATA —J»TMP
STATUSIE! (TMP)+1 ALU
DCR ¢ ooDD | D101 (DDD)>TMP ALU-DDD e -
(TMP)+1—ALU e L L
DCR M o011 |[0101 X HL OUT DATA —{» TMP
STATUSIS! ALU
INX rp 00RP 0011 (RP)+1_____ LRP - o
DCX rp ooRP | 10011 (RP) -1
DAD rpl8] 00RP 1001 X (L)>TMP, ALU-L, CY
® (ACT)+(TMP)>ALU
DAA o010 | 0111 DAA-A, FLAGSI10] . | o
ANAT 1010 0s8SS (SSSI>TMP o
(Al>ACT ;
ANA M 1 10| 011 0] pcour | pc=pc+1| INST-TMPIR | (Al»ACT HL OUT DATA-|»TMP
STATUS STATUSISl

2-16

M3 M4 M5
T T2(2 T3 T T2(2 T3
HL OUT (TMP) —{» DATA BUS
STATUSI7]
PC OUT PC=PC+1 B3 —{»rh
STATUSE!
PC=PC+1 B3 —{=-W wz ouT DATA - A
STATUSI6!
PC=PC+1 B3—{»-W wz ouT (A) + DATA BUS
STATUS!7]
PC=PC+1 B3—»-W WZ OUT DATA +L Wz ouUT DATA-{s-H
STATUSIB] | wz=wz+1 STATUSI6!
PC OUT PC=PC+1 B3—{»-W WZ ouT (L) ———+DATABUS | wzouT (H —>DATA BUS
sTATUSIE! sTATUSIZl | wz-wz+1 sTATUS(7]
19l (ACT)+(TMP)—>A
[9 (ACT)+(TMP)—A
(9l (ACT)+(TMP)+CY—A
19) (ACT)+(TMP)+CY—A
) (ACT)-(TMP)—A
(91 (ACT)-(TMP)>A
)] (ACT)-(TMP)-CY—A
(9 (ACT)-(TMP)-CY—A
HL OUT ALU —»DATA BUS
STATUS(?]
HL OUT ALU—{» DATA BUS
STATUS[]
(rh)>ACT | (H)>TMP ALU-H, CY

(ACT)+(TMP)+CY—ALU

&)}

(ACT)+(TMP)-A

2-17

MNEMONIC

M1

OP CODE M2
D7DgD5D4 | D3D2D1Dg T T212 T3 T4 T1 T2(2 T3
ANI data 1110 (| 0110 | PCOUT | PC=PC+1|INST-TMP/IR | (A)+ACT PC OUT PC=PC+1 B2
STATUS STATUSI6!
XRAr 1010 1s8S (A)>ACT 0 (ACT)I+(TPM)>A
(SSS)-TMP
XRA M 1010 1110 (A)»ACT HL OUT DATA
STATUSL6]
XRI data 1110|1110 (Al»ACT PC OUT PC=PC+1 B2
STATUSI6]
ORAr 101 1 0SS s (A)=ACT ©) (ACT)+(TMP)—A
(SSS)-TMP
ORA M 101 1 0110 (A)l»ACT HL OUT DATA
STATUs!E!
ORI data 1111 0110 (A)l-ACT PC OUT PC=PC+1 B2 —{»TMP
STATUSIE]
cMPr 101 1 158S (A)=ACT 10l (ACT)-(TMP), FLAGS
(SSS)-TMP
CMP M 101 1 1110 (A)-ACT HL OUT DATA —{=TMP
STATUSI6]
CPI data 1111 1110 (A)~ACT PC OUT PC=PC+1 B2 —»=TMP
STATUSI6]
RLC 0000|0111 (A)»ALU G ALU-A, CY
ROTATE
RRC o000 | 1111 (A)~ALU &) ALU-A, CY
ROTATE
RAL 000 1 0111 (A), CY~ALU £ ALU-A, CY
ROTATE
RAR 0001 1111 (A), CY~ALU 19 ALU-A, CY
ROTATE
CMA 0010 1111 (A)>A
cmc 0011 11 11 cY-cY
sTC 0011 0111 1-CY
JMP addr 1100|0011 X PC OUT PC=PC+1
STATUSIE]
Jeondaddrli7l | 1 1 cc | co 10 JUDGE CONDITION PC OUT PC=PC+1 B2 —»2
STATUSIE!
CALL addr 1100 1101 SP=SP-1 PC OUT PC=PC+1 B2—>2
STATUSI6]
Ceondaddrl1”l | 1 1 cc | c100 JUDGE CONDITION PC OUT PC=PC+1 B2—{»2Z
IF TRUE,SP=SP - 1 STATUSIE!
RET 1100 1001 X SP OUT SP=SP+1 DATA—»Z
STATUS[15]
Rcondaddrt? | 1 1 Cc C cooo INST-TMP/IR JUDGE CONDITION(14] SP OUT SP=SP+1 DATA—I»Z
STATUS(15
RSTn 11 NN| NT 11 W SP=SP-1 SP OUT SP=SP-1 (PCH) —{»DATA BUS
INST-TMP/IR STATUSI16]
PCHL 1110|1001 INST-TMP/IR | (HL) b PC
PUSH rp 11RP|[0101 SP=SP-1 SP OUT SP=SP-1 {rh)—»DATA BUS
sTATUS[16]
PUSH PSW 1111 0101 SP=SP-1 SP OUT SP=SP-1 (A)—»DATA BUS
STATUSI16]
POP rp 11RP | 0001 X SP OUT SP=SP+1 DATA—|»rl
STATUSI5]
POP PSW 1111 0001 X SP OUT SP=SP+1 DATA—{»FLAGS
sTATUS(15)
XTHL 1110 0011 X SP OUT SP=SP+1 DATA—»Z
STATUS(15]
IN port 1101 1011 X PC OUT PC=PC+1 B2—»Z, W
STATUSI6!
OUT port 1101 0011 X PC OUT PC=PC+1 B2—{»Z,W
po STATUS!E!
El 1111 1011 SET INTE F/F
[1111 0011 RESET INTE F/F
HLT 01 11 0110 X PC OUT HALT MODEI[]
STATUS
NOP 0000 | 00O0GO | PCOUT | PC=PC+1[INST-TMP/IR X -
STATUS

2-18

M3

M5

T

T2(2 T3

(ACT)+(TMP)—A

T3

(ACT)+(TMP)—A

(ACT)+(TMP)—A

(ACT)+(TMP)>A

(ACT)+(TMP)—A

(ACT)-{TMP); FLAGS

(ACT)-(TMP); FLAGS

PCOUT

PC=PC+1 B3 —f»W WZ OUT (WZ) +1-PC
STATUSIE! STATUS[1]
PCOUT PC=PC+1 B3 —f»W WZ OUT (W2) +1-PC
STATUSIE! hde STATUSI1112]
PCOUT PC=PC+1 B3 —f»W >~ DATA BUS WZ ouT (W2) +1-PC
STATUSI6] STATUS(]
PC OUT PC=PC+1 83 —f=wl(13] = DATA BUS DATA BUS WZ OUT (W2) +1-PC
STATUSE) STATUS[11.12)
SP OUT SP=SP+1 DATA —{=W Wz ouT (W2) +1- PC
STATUSI15] STATUSI11]
SP OUT SP=SP+1 DATA—{»W WZ OUT (W2) +1-PC
STATUS[15] STATUSI1.12]
SPOUT (TMP = 0ONNNOGO) —#~Z WZ OUT (W2) +1-PC
STATUS[16] (PCL)—{»DATA BUS STATUS[1)

SPOUT
STATUS(16]

(rl) —»DATA BUS

SP OUT
STATUS(18]

FLAGS —»DATA BUS

SP OUT SP=SP+1 DATA—{erh
STATUSI[15]
SP OUT SP=SP+1 DATA-{»A
STATUSI[15]

SPOUT
STATUSI15]

DATA —»W

WZ OUT
STATUSsI18]

DATA —»A

wz ouT
STATUS(18]

(A) —»DATA BUS

2-19

NOTES:

1. The first memory cycle (M1) is always an instruction
fetch; the first (or only) byte, containing the op code, is
fetched during this cycle.

2. If the READY input from memory is not high during
T2 of each memory cycle, the processor will enter a wait
state (TW) until READY is sampled as high.

3. States T4 and T5 are present, as required, for opera-
tions which are completely internal to the CPU. The con-
tents of the internal bus during T4 and T5 are available at
the data bus; this is designed for testing purposes only. An
“X"" denotes that the state is present, but is only used for
such internal operations as instruction decoding.

4. Only register pairs rp = B (registers B and C) or rp=D
(registers D and E) may be specified.

5. These states are skipped.

6. Memory read sub-cycles; an instruction or data word
will be read.

7. Memory write sub-cycle.

8. The READY signal is not required during the second
and third sub-cycles (M2 and M3). The HOLD signal is
accepted during M2 and M3. The SYNC signal is not gene-
rated during M2 and M3. During the execution of DAD,
M2 and M3 are required for an internal register-pair add;
memory is not referenced.

9. The results of these arithmetic, logical or rotate in-
structions are not moved into the accumulator (A) until
state T2 of the next instruction cycle. That is, A is loaded
while the next instruction is being fetched; this overlapping
of operations allows for faster processing.

10. If the value of the least significant 4-bits of the accumu-
lator is greater than 9 or if the auxiliary carry bit is set, 6

is added to the accumulator. If the value of the most signifi-
cant 4-bits of the accumulator is now greater than 9, or if
the carry bit is set, 6 is added to the most significant

4-bits of the accumulator.

11. This represents the first sub-cycle (the instruction
fetch) of the next instruction cycle.

2-20

12. If the condition was met, the contents of the register
pair WZ are output on the address lines (Aqg 15) instead of
the contents of the program counter (PC).

13. If the condition was not met, sub-cycles M4 and M5
are skipped; the processor instead proceeds immediately to
the instruction fetch (M1) of the next instruction cycle.

14. If the condition was not met, sub-cycles M2 and M3
are skipped; the processor instead proceeds immediately to
the instruction fetch (M1) of the next instruction cycle.

15. Stack read sub-cycle.
16. Stack write sub-cycle.

17. CONDITION CcC
NZ — not zero (Z=0) 000

Z — zero (Z2=1) 001

NC — no carry (CY =0) 010

C — carry (CY=1) 011

PO — parity odd (P = 0) 100

PE — parity even (P=1) 101

P — plus (S=0) 110

M — minus (S=1) 111

18. 1/0 sub-cycle: the 1/0 port’s 8-bit select code is dupli-
cated on address lines 0-7 (Ag.7) and 815 (Ag.15).

19. Output sub-cycle.

20. The processor will remain idle in the halt state until

an interrupt, a reset or a hold is accepted. When a hold re-
quest is accepted, the CPU enters the hold mode; after the
hold mode is terminated, the processor returns to the halt
state. After a reset is accepted, the processor begins execu-
tion at memory location zero. After an interrupt is accepted,
the processor executes the instruction forced onto the data
bus (usually a restart instruction).

SSSor DDD Value rp Value
A 111 B 00
B 000 D 01
C 001 H 10
D 010 SP 11
E 011
H 100
L 101

This chapter will illustrate, in detail, how to interface
the 8080 CPU with Memory and 1/0. It will also show the
benefits and tradeoffs encountered when using a variety of
system architectures to achieve higher throughput, de-
creased component count or minimization of memory size.

8080 Microcomputer system design lends itself to a
simple, modular approach. Such an approach will yield the
designer a reliable, high performance system that contains a
minimum component count and is easy to manufacture and
maintain.

The overall system can be thought of as a simple
block diagram. The three (3) blocks in the diagram repre-
sent the functions common to any computer system.

CPU Module* Contains the Central Processing Unit, system
timing and interface circuitry to Memory
and 1/0 devices.

Memory Contains Read Only Memory (ROM) and
Read/Write Memory (RAM) for program and
data storage.

1/0 Contains circuitry that allows the computer

system to communicate with devices or
structures existing outside of the CPU or
Memory array.

for example:
Paper Tape, etc.

Keyboards, Floppy Disks,

There are three busses that interconnect these blocks:

Data Bus A bi-directional path on which data can flow

between the CPU and Memory or 1/0.

Address Bus A uni-directional group of lines that identify

a particular Memory location or 1/0 device.

*“Module’’ refers to a functional block, it does not ref-
erence a printed circuit board manufactured by INTEL.

T'Bus” refers to a set of signals grouped together because
of the similarity of their functions.

31

Control Bus A uni-directional set of signals that indicate

the type of activity in current process.

Type of activities: 1. Memory Read
2. Memory Write
3. 1/0 Read
4. 1/0 Write
5. Interrupt Acknowledge

U

ADDRESS BUS

MEMORY 110
cPU
MODULE @ ﬁ @
< DATA BUS >

CONTROL BUS

Figure 3-1. Typical Computer System Block Diagram

Basic System Operation

1. The CPU Module issues an activity command on the
Control Bus.

2. The CPU Module issues a binary code on the Address
Bus to identify which particular Memory location or
1/0 device will be involved in the current process
activity.

3. The CPU Module receives or transmits data with the
selected Memory location or 1/0 device.

4, The CPU Module returns to @ and issues the next
activity command.

It is easy to see at this point that the CPU module is
the central element in any computer system.

The following pages will cover the detailed design of
the CPU Module with the 8080. The three Busses (Data,
Address and Control) will be developed and the intercon-
nection to Memory and 1/0 will be shown.

Design philosophies and system architectures pre-
sented in this manual are consistent with produ% develop-
ment programs underway at INTEL for the MCS-80. Thus,
the designer who uses this manual as a guide for his total
system engineering is assured that all new developments in
components and software for MCS-80 from INTEL will be

the design and to achieve operational characteristics that
are as close as possible to those of the 8224 and 8228.
Many auxiliary timing functions and features of the 8224
and 8228 are too complex to practically implement in
standard components, so only the basic functions of the
8224 and 8228 are generated. Since significant benefits in
system timing and component count reduction can be
realized by using the 8224 and 8228, this is the preferred
method of implementation.

compatible with his design approach. 1. 8080 CPU
The operation of the 8080 CPU was covered in pre-
CPU Module Design vious chapters of this manual, so little reference will
. be made to it in the design of the Module.
The CPU Module contains three major areas:
1. The 8080 Central Processing Unit 2. Clock Generator and High Level Driver
A Clock Generator and High Level Driver The 8080 is a dynamic device, meaning that its inter-
A bi-directional Data Bus Driver and System Control nal storage elements and logic circuitry require a
Logic timing reference (Clock), supplied by external cir-
o . . . cuitry, to refresh and provide timing control signals.
The following will discuss the design of the three . .
major areas contained in the CPU Module. This design is The 8080 requires two (2) _5”°h Clocks. Their wave-
presented as an alternative to the Intel® 8224 Clock Gener- ff)rr‘ns must be non-ov.erlap;.)mg, and comply with the
ator and Intel 8228 System Controller. By studying the timing a"‘_j I_evels specified in the 8080 A.C. and D.C.
alternative approach, the designer can more clearly see the Characteristics, page 5-15.
considerations involved in the specification and engineering .
of the 8224 and 8228. Standard TTL components and Intel Clock Generator Design
general purpose peripheral devices are used to implement The Clock Generator consists of a crystal controlled,
2 25 > 3
GND 2 A0 26 » A0
+5V ———>f A1l —» Al
-5V ——”—D A2 27 » A2
+12V —-——2BP A3 ;z » A3
A4 » A4
A5 g; » A5
8080 A6 33 » A6
CPU A7 » A7
A8 34 > A8 ADDRESS BUS
SYSTEM DMA REQ. —iP HOLD A9 35 —» A9
A10 L —» A10
A1l 40 —p A1l
SYSTEM INT. REQ. ——] INT a2 [37 > A12
A13 38 —p A13
INT. ENABLE 4——2— INTE a1a |2 »> Al4
a1s |38 —» A15 |
WA 18
D XTAL DBIN ;:
HLDA ———j
221 o1 00 J€2 > le— DBO]
157 @2 D1 :9 » le———» DB1
D2 l& le——» DB2
CLOCK < 2 { wait D3 |e BTI]?)}?AELC— l&——» DB3 DATA BUS
WAIT REQ. R vl 2, reaoy D4 j BUS DRIVER [¢—® DB4
e 12 D5 |e N l¢«——> DBS
SYS. RESET —PO) »| RESET 06 le > le——» DB6
” 19 SYNC D7 <& > le———» DB7 J
o—» INTA
T — lo———» MEMR
STATUS STROBE
> ggﬂgl\gL o————» MEMW | CONTROL BUS
lo——» I/OR
o———» 1/0W

Figure 3-2. 8080 CPU Interface

T

OSCILLATOR
I Lzo MHz
330 L 330
VAVAV ‘VAV‘V
74504
\—'DC i OD » 0SC
74504 680 pF 74504 CLOCK GENERATOR
CLK 7486
Vee DA QA 74H00
I » 61 (TTL)
DB a8
74163
DC ac
I 7486
GND oo ao|—, 74H00
CLR LD fD_ :Dc > F2(TTL)
I I = AUXILIARY FUNCTIONS
Vee SYNC
24H00 74H00
D STSTB
74574
WAVEFORMS —
LJcLka » 61A (TTL)
¢ __/ /
100/100
s L] }—50ns WAIT REQ D Qf— READY
92 250ns 74574
Sons—| |— — < 50ns ek
A . 250ns
SYNC [\ DMA REQ D Ql— HOLD
74574
L—cLk
STSTB \ / -

Figure 3-3. 8080 Clock Generator

20 MHZ oscillator, a four bit counter, and gating
circuits.

The oscillator provides a 20 MHZ signal to the input
of a four (4) bit, presettable, synchronous, binary
counter. By presetting the counter as shown in figure
3-3 and clocking it with the 20 MHZ signal, a simple
decoding of the counters outputs using standard TTL
gates, provides proper timing for the two (2) 8080
clock inputs.

Note that the timing must actually be measured at
the output of the High Level Driver to take into ac-
count the added delays and waveform distortions
within such a device.

High Level Driver Design

The voltage level of the clocks for the 8080 is not
TTL compatible like the other signals that input to
the 8080. The voltage swing is from .6 volts (ViLe)
to 11 volts (V) with risetimes and falltimes under
50 ns. The Capacitive Drive is 20 pf (max.). Thus, a
High Level Driver is required to interface the outputs
of the Clock Generator (TTL) to the 8080.

The two (2) outputs of the Clock Generator are ca-
pacitivity coupled to a dual- High Level clock driver.
The driver must be capable of complying with the
8080 clock input specifications, page 5-15. A driver
of this type usually has little problem supplying the

positive transition when biased from the 8080 Vpp
supply (12V) but to achieve the low voltage specifi-
cation (V) c) .8 volts Max. the driver is biased to the
8080 Vgg supply (-5V). This allows the driver to
swing from GND to Vpp with the aid of a simple
resistor divider.

A low resistance series network is added between the
driver and the 8080 to eliminate any overshoot of the
pulsed waveforms. Now a circuit is apparent that can
easily comply with the 8080 specifications. In fact
rise and falltimes of this design are typically less than
10 ns.

+12Vv

f

680 pF 2 2 479 »
?1 (TTL —— MH0026 W— (8080 PIN 22)
e B80F, E§:|V. 5 N
@2 T —j— YW (8080 PIN 15)
3

1N4002
L X
BBuF == S 1000

> >
1BKE 25K

< 4
-5V

Figure 3-4. High Level Driver

3-3

Auxiliary Timing Signals and Functions 3. Bi-Directional Bus Driver and System Control Logic
The Clock Generator can also be used to provide The system Memory and 1/O devices communicate
other signals that the designer can use to simplify with the CPU over the bi-directional Data Bus. The
large system timing or the interface to dynamic system Control Bus is used to gate data on and off
memories. ‘ the Data Bus within the proper timing sequences as
Functions such as power-on reset, synchronization of Ic!lctate? ttiwy tgg B%p f)r:ltjlorl\‘llOf the 808dO I(/:(F)’Lii T_h e data
external requests (HOLD, READY, etc.) and single ines o) € - em0fy an faV|ces are
. 3-state in nature, that is, their output drivers have
step, could easily be added to the Clock Generator to . . C .
- s the ability to be forced into a high-impedance mode
further enhance its capabilities.
and are, effectively, removed from the circuit. This 3-
For instance, the 20 MHZ signal from the oscillator state bus technique allows the designer to construct a
can be buffered so that it could provide the basis for system around a single, eight (8) bit parallel, bi-direc-
communication baud rate generation. tional Data Bus and simply gate the information on
The Clock Generator diagram also shows how to gen- or off this bus by selecting or deselecting (3-stating)
erate an advanced timing signal (¢1A) that is handy Memory and 1/0 devices with signals from the Con-
to use in clocking D" type flipflops to synchronize trol Bus.
external requests. It can also be used to generate a — . . .
Bi-Directional Data Bus Driver Design
strobe (STSTB) that is the latching signal for the sta- 9 .
tus information which is available on the Data Bus at The 8080 Data Bus (D7-D0) has two (2) major areas
the beginning of each machine cycle. A simple gating of concern for the designer:
of the SYNC signal from the 8080 and the advanced 1. Input Voltage level (V) 3.3 volts minimum.
i job. Fi -3. . - .
(¢1A) will do the job. See Figure 3 2. Output Drive Capability (I,) 1.7 mA maximum.
BUSEN
DO 24 [3 DBO
D1 5.7 [8216 5 DB1
. e —r
D3 J SEN = DB3
159 Q1
D4 24 3 DB4
5.7 — 6
D5 DB5
o6 911, — 8216 10 086
o7 2u- |3 87
DIEN CS
DBIN o>—>o— 57 T
3 4 INTA .
5 8 WO _Do_lNTA
8080 7 8 STACK
9 8212 10 HLTA
16 15 OUT ——
18 17 M ,_D— VOR
20 19 INP
22 21 MEMR
MEM R
STSTB-—1? 2 18 v
- o '___Do-— oW
Do [o—— wemw

Figure 3-5. 8080 System Control

34

The input level specification implies that any semi-
conductor memory or |/O device connected to the
8080 Data Bus must be able to provide a minimum of
3.3 volts in its high state. Most semiconductor mem-
ories and standard TTL 1/O devices have an output
capability of between 2.0 and 2.8 volts, obviously a
direct connection onto the 8080 Data Bus would re-
quire pullup resistors, whose value should not affect
the bus speed or stress the drive capability of the
memory or /O components.

The 8080A output drive capability (Ig) 1.9mA max.
is sufficient for small systems where Memory size and
1/0 requirements are minimal and the entire system is
contained on a single printed circuit board. Most sys-
tems however, take advantage of the high-perfor-
mance computing power of the 8080 CPU and thus a
more typical system would require some form of buf-
fering on the 8080 Data Bus to support a larger array
of Memory and 1/O devices which are likely to be on
separate boards.

A device specifically designed to do this buffering
function is the INTEL® 8216, a (4) four bit bi-direc-
tional bus driver whose input voltage level is compat-
ible with standard TTL devices and semiconductor
memory components, and has output drive capability
of 60 mA. At the 8080 side, the 8216 has a “‘high"’
output of 3.65 volts that not only meets the 8080
input spec but provides the designer with a worse case
350 mV noise margin.

A pair of 8216’s are connected directly to the 8080
Data Bus (D7-D0) as shown in figure 3-5. Note that
the DBIN signal from the 8080 is connected to the
direction control input (DIEN) so the correct flow of
data on the bus is maintained. The chip select (CS) of

the 8216 is connected to BUS ENABLE (BUSEN) to
allow for DMA activities by deselecting the Data Bus
Buffer and forcing the outputs of the 8216 into
their high impedance (3-state) mode. This allows
other devices to gain access to the data bus (DMA).

System Control Logic Design

The Control Bus maintains discipline of the bi-direc-
tional Data Bus, that is, it determines what type of
device will have access to the bus (Memory or 1/0)
and generates signals to assure that these devices
transfer Data with the 8080 CPU within the proper
timing “windows"’ as dictated by the CPU operational
characteristics.

As described previously, the 8080 issues Status infor-
mation at the beginning of each Machine Cycle on its
Data Bus to indicate what operation will take place
during that cycle. A simple (8) bit latch, like an
INTEL® 8212, connected directly to the 8080 Data
Bus (D7-D0) as shown in figure 3-5 will store the

3-5

Status information. The signal that loads the data
into the Status Latch comes from the Clock Gener-
ator, it is Status Strobe (STSTB) and occurs at the
start of each Machine Cycle.

Note that the Status Latch is connected onto the
8080 Data Bus (D7-D0) before the Bus Buffer. This is
to maintain the integrity of the Data Bus and simplify
Control Bus timing inDMA dependent environments.

As shown in the diagram, a simple gating of the out-
puts of the Status Latch with the DBIN and WR
signals from the 8080 generate the (4) four Control
signals that make up the basic Control Bus.

These four signals: 1. Memory Read (MEM R)
2. Memory Write (m)
3.1/0 Read (/O R)
4.1/0 Write (I/0'W)

connect directly to the MCST-MSO component “‘family”’
of ROMs, RAMs and 1/0O devices.

A fifth signal, Interrupt Acknowledge (INTA) is
added to the Control Bus by gating data off the
Status Latch with the DBIN signal from the 8080
CPU. This signal is used to enable the Interrupt
Instruction Port which holds the RST instruction
onto the Data Bus.

Other signals that are part of the Control Bus such as
%, Stack and M1 are present to aid in the testing of
the System and also to simplify interfacing the CPU
to dynamic memories or very large systems that re-
quire several levels of bus buffering.

Address Buffer Design

The Address Bus (A15-A0) of the 8080, like the Data
Bus, is sufficient to support a small system that has a
moderate size Memory and |/O structure, confined to
a single card. To expand the size of the system that
the Address Bus can support a simple buffer can be
added, as shown in figure 3-6. The INTEL®8212 or
8216 is an excellent device for this function. They
provide low input loading (.25 mA), high output
drive and insert a minimal delay in the System
Timing.

Note that BUS ENABLE (BUSEN) is connected to
the buffers so that they are forced into their high-
impedance (3-state) mode during DMA activities so
that other devices can gain access to the Address Bus.

INTERFACING THE 8080 CPU TO MEMORY
AND 1/0 DEVICES

The 8080 interfaces with standard semiconductor
Memory components and |I/O devices. In the previous text
the proper control signals and buffering were developed
which will produce a simple bus system similar to the basic
system example shown at the beginning of this chapter.

In Figure 3-6 a simple, but exact 8080 typical system
is shown that can be used as a guide for any 8080 system,
regardless of size or complexity. It is a “three bus” archi-
tecture, using the signals developed in the CPU module.

Note that Memory and 1/O devices interface in the
same manner and that their isolation is only a function of
the definition of the Read-Write signals on the Control Bus.
This allows the 8080 system to be configured so that Mem-
ory and 1/O are treated as a single array (memory mapped
1/0) for small systems that require high thruput and have
less than 32K memory size. This approach will be brought
out later in the chapter.

ROM INTERFACE

A ROM is a device that stores data in the form of
Program or other information such as “‘look-up tables”” and
is only read from, thus the term Read Only Memory. This
type of memory is generally non-volatile, meaning that
when the power is removed the information is retained.

This feature eliminates the need for extra equipment like
tape readers and disks to load programs initially, an im-
portant aspect in small system design.

Interfacing standard ROMs, such as the devices shown
in the diagram is simple and direct. The output Data lines
are connected to the bi-directional Data Bus, the Address
inputs tie to the Address bus with possible decoding of the
most significant bits as “chip selects” and the MEMR signal
from the Control Bus connected to a ‘‘chip select’ or data
buffer. Basically, the CPU issues an address during the first
portion of an instruction or data fetch (T1 & T2). This
value on the Address Bus selects a specific location within
the ROM, then depending on the ROM’s delay (access time)
the data stored at the addressed location is present at the
Data output lines. At this time (T3) the CPU Data Bus is
in the “input Mode’’ and the control logic issues a Memory
Read command (MEMR) that gates the addressed data on
to the Data Bus.

RAM INTERFACE

A RAM is a device that stores data. This data can be
program, active “look-up tables,’” temporary values or ex-
ternal stacks. The difference between RAM and ROM is
that data can be written into such devices and are in
essence, Read/Write storage elements. RAMs do not hold
their data when power is removed so in the case where Pro-
gram or ‘“look-up tables” data is stored a method to load

f;

STSTB CLOCK 8224
GENERATOR HOLD REQ
AND DRIVER
t 4
SYNC ¢2 o1 RESET
INT |«
b RDY 8080A CPU
WR DO-D7 DBIN HLDA A0-A15
Q 1 1
{7 I = 2
— N --==] 8102A4
pow :7—8212 ADDRESS 3 8702A 8302 8101-2 810244
SYSTEM ! g205 BUFFERS/ | 8704 ROMs 8308 81112 RAMs g 00
CONTROLLER DECODER .
Ll_8216 (OPTIONAL_)_} 8708 8316A 81022 5101 8222

T U

T g1

DATA BUS (8)

U il

H

i JLO 1 1

CONTROL BUS (6)

HENEEY

L1

I JL |

ADDRESS BUS (16)

=

S

NN\

8251 1/0

COMMUNICATION
INTERFACE

8212
8255

8214

8212

1/0
PERIPHERAL
INTERFACE

PRIORITY
INTERRUPT

Figure 3-6. Microcomputer System

3-6

RAM memory must be provided, such as: Floppy Disk,
Paper Tape, etc.

The CPU treats RAM in exactly the same manner as
ROM for addressing data to be read. Writing data is very
similar; the RAM is issued an address during the first por-
tion of the Memory Write cycle (T1 & T2) in T3 when the
data that is to be written is output by the CPU and is stable
on the bus an MEMW command is generated. The MEMW
signal is connected to the R/W input of the RAM and
strobes the data into the addressed location.

In Figure 3-7 a typical Memory system is illustrated
to show how standard semiconductor components interface
to the 8080 bus. The memory array shown has 8K bytes
(8 bits/byte) of ROM storage, using four Intel®8216As
and 512 bytes of RAM storage, using Intel 8111 static
RAMs. The basic interface to the bus structure detailed
here is common to almost any size memory. The only ad-
dition that might have to be made for larger systems is
more buffers (8216/8212) and decoders (8205) for gener-
ating ‘‘chip selects.”

The memories chosen for this example have an access
time of 850 nS (max) to illustrate that slower, economical
devices can be easily interfaced to the 8080 with little ef-
fect on performance. When the 8080 is operated from a
clock generator with a tCY of 500 nS the required memory
access time is Approx. 450-550 nS. See detailed timing
specification Pg. 5-16. Using memory devices of this speed
such as lntel®8308, 8102A, 8107A, etc. the READY input
to the 8080 CPU can remain ““high’”’ because no ‘‘wait’’
states are required. Note that the bus interface to memory
shown in Figure 3-7 remains the same. However, if slower
memories are to be used, such as the devices illustrated
(8316A, 8111) that have access times slower than the min-
imum requirement a simple logic control of the READY
input to the 8080 CPU will insert an extra ‘‘wait state’’ that
is equal to one or more clock periods as an access time
“adjustment” delay to compensate. The effect of the extra
“wait”’ state is naturally a slower execution time for the
instruction. A single “wait” changes the basic instruction
cycle to 2.5 microSeconds.

8K + 512 8K

0
RAM ROM
MEMORY MAP
ROM
#4 1
RAM #3]
1 1 #2 |
#
8111 8111 8316A Cs3
cs2
R/W OD 1/01-4 AO-A7 RW OD 1/01-4 AOQ-A7 csi 01-08 A0-A10
N\ 2N\
MEMW MEMR AC-A7 EMW MEVR AC-A7 MEMR AC-A10 ﬁ};'
DATA BUS (8

CONTROL BUS (6)

ADDRESS BUS (16)

Figure 3-7. Typical Memory Interface

3-7

1/0 INTERFACE

General Theory

As in any computer based system, the 8080 CPU must
be able to communicate with devices or structures that exist
outside its normal memory array. Devices like keyboards,
paper tape, floppy disks, printers, displays and other control
structures are used to input information into the 8080 CPU
and display or store the results of the computational activity.

Probably the most important and strongest feature of
the 8080 Microcomputer System is the flexibility and power
of its 1/0 structure and the components that support it. There
are many ways to structure the /O array so that it will ““fit”
the total system environment to maximize efficiency and
minimize component count.

The basic operation of the I/O structure can best be
viewed as an array of single byte memory locations that can
be Read from or Written into. The 8080 CPU has special in-
structions devoted to managing such transfers (IN, OUT).
These instructions generally isolate memory and 1/0O arrays
so that memory address space is not effected by the 1/O
structure and the general concept is that of a simple transfer
to or from the Accumulator with an addressed “PORT". An-
other method of 1/0 architecture is to treat the I/O structure
as part of the Memory array. This is generally referred to as
“Memory Mapped 1/0” and provides the designer with a
powerful new “instruction set’ devoted to 1/0 manipulation.

ISOLATED I/0

£
24

MEMORY

e
rds

256

1/0

MEMORY 1/0

MEMORY MAPPED 1/0

Figure 3-8. Memory/I/O Mapping.

Isolated 1/0

In Figure 3-9 the system control signals, previously de-
tailed in this chapter, are shown. This type of 1/O architecture
separates the memory address space from the /O address
space and uses a conceptually simple transfer to or from Ac-
cumulator technique. Such an architecture is easy to under-
stand because |/0 communicates only with the Accumulator
using the IN or OUT instructions. Also because of the isola-
tion of memory and 1/0, the full address space (65K) is un-
effected by 1/O addressing.

3-8

O————— MEMR
TO MEMORY
JR— DEVICES

o——— MEMW

}TO 1/0 DEVICES

SYSTEM
CONTROL

(8228)

| 3

]

Figure 3-9. Isolated 1/0.

Memory Mapped 1/0

By assigning an area of memory address space as |/O a
powerful architecture can be developed that can manipulate
1/0 using the same instructions that are used to manipulate
memory locations. Thus, a “‘new’’ instruction set is created
that is devoted to /O handling.

As shown in Figure 3-10, new control signals are gene-
rated by gating the MEMR and MEMW signals with A1g, the
most significant address bit. The new 1/O control signals con-
nect in exactly the same manner as lIsolated 1/0, thus the
system bus characteristics are unchanged.

By assigning A15 as the 1/O ‘‘flag”, a simple method of
1/0 discipline is maintained:

I1f A1 is a “zero’”” then Memory is active.
If A1 is a ““one’’ then 1/0 is active.

Other address bits can also be used for this function. A15 was
chosen because it is the most significant address bit so it is
easier to control with software and because it still allows
memory addressing of 32K.

1/0 devices are still considered addressed “‘ports” but
instead of the Accumulator as the only transfer medium any
of the internal registers can be used. All instructions that
could be used to operate on memory locations can be used
in 1/0.

Examples:

MOVr, M (Input Port to any Register)
MOV M, r (Output any Register to Port)
MVIM (Output immediate data to Port)
LDA (Input to ACC)

STA {Output from ACC to Port)
LHLD (16 Bit Input)

SHLD (16 Bit Output)

ADD M (Add Port to ACC)

ANA M (“AND" Port with ACC)

It is easy to see that from the list of possible “new"
instructions that this type of 1/O architecture could have a
drastic effect on increased system throughput. It is concep-
tually more difficult to understand than Isolated 1/0 and it
does limit memory address space, but Memory Mapped 1/0
can mean a significant increase in overall speed and at the
same time reducing required program memory area.

MEWR 0
| MEMORY
ER DEVICES
SYSTEM
CONTROL _
(8228) 170 R (MM)
| TO10
DEVICES
i70 W (VM)

Figure 3-10. Memory Mapped 1/0.

1/0 Addressing

With both systems of 1/O structure the addressing of
each device can be configured to optimize efficiency and re-
duce component count. One method, the most common, is
to decode the address bus into exclusive ‘‘chip selects’’ that
enable the addressed 1/0 device, similar to generating chip-
selects in memory arrays.

Another method is called “linear select”. In this method,
instead of decoding the Address Bus, a singular bit from the
bus is assigned as the exclusive enable for a specific 1/0 de-
vice. This method, of course, limits the number of 1/0 de-
vices that can be addressed but eliminates the need for extra
decoders, an important consideration in small system design.

A simple example illustrates the power of such a flexi-
ble 1/0 structure. The first example illustrates the format of
the second byte of the IN or OUT instruction using the Iso-
lated 1/0 technique. The devices used are Intel®8255 Pro-
grammable Peripheral Interface units and are linear selected.
Each device has three ports and from the format it can be
seen that six devices can be addressed without additional de-
coders.

EXAMPLE #1

s nfaafa]n]m]

]— PORT SELECTS

I

DEVICE SELECTS

ADDRESSES — 6 — 82555
(18 PORTS — 144 BITS)

Figure 3-11. Isolated 1/O — (Linear Select) (8255)

The second example uses Memory Mapped /0 and
linear select to show how thirteen devices (8255) can be ad-
dressed without the use of extra decoders. The format shown
could be the second and third bytes of the LDA or STA in-
structions or any other instructions used to manipulate 1/0
using the Memory Mapped technique.

It is easy to see that such a flexible 1/O structure, that
can be ““tailored” to the overall system environment, provides
the designer with a powerful tool to optimize efficiency and
minimize component count.

EXAMPLE #2

Lo lae][a s [a A

} PORT SELECTS

DEVICE SELECTS

|A15|A14|A13|A1z|A11|A1o| Ag | Asl

S DEVICE SELECTS
1=1/0
1/0 FLAG O = MEMORY

ADDRESSES — 13 — 82555
(39 PORTS — 312 BITS)

Figure 3-12. Memory Mapped 1/0 — (Linear Select (8255)

1/0 Interface Example

In Figure 3-16 a typical 1/0 system is shown that uses a
variety of devices (8212, 8251 and 8255). It could be used
to interface the peripherals around an intelligent CRT termi-
nals; keyboards, display, and communication interface. An-
other application could be in a process controller to interface
sensors, relays, and motor controls. The limitation of the ap-
plication area for such a circuit is solely that of the designers
imagination.

The 1/O structure shown interfaces to the 8080 CPU
using the bus architecture developed previously in this chap-
ter. Either Isolated or Memory Mapped techniques can be
used, depending on the system 1/O environment.

The 8251 provides a serial data communication inter-
face so that the system can transmit and receive data over
communication links such as telephone lines.

3-9

Lelofofal] [X]a]

L_ _ 0-DATA

C/D CONTROL 1 — COMMAND
8251 SELECT
(ACTIVE LOW)

Figure 3-13. 8251 Format.

The two (2) 8255s provide twenty four bits each of
programmable 1/0 data and control so that keyboards, sen-
sors, paper tape, etc., can be interfaced to the system.

The three 8212s can be used to drive long lines or LED
indicators due to their high drive capability. (15mA)

IZIAe|A|s|1|1|1l><l>§l

8212 #1 SELECT
(ACTIVE HIGH)

8212 #2 SELECT
(ACTIVE HIGH)

8212 #3 SELECT
(ACTIVE HIGH)

00 — PORT A
01 —PORTB
10 -PORT C
11 — COMMAND

Lolefelt]aleln]n]

} PORT SELECT

8255 #1 SELECT
(ACTIVE LOW)

8255 #2 SELECT
(ACTIVE LOW)

Figure 3-14. 8255 Format.

Figure 3-15. 8212 Format.

Addressing the structure is described in the formats il-
lustrated in Figures 3-13, 3-14, 3-15. Linear Select is used so
that no decoders are required thus, each device has an ex-
clusive “‘enable bit".

The example shows how a powerful yet flexible 1/O
structure can be created using a minimum component count
with devices that are all members of the 8080 Microcomputer
System.

SERIAL DATA
COMMUNICATION

1 |

0 840

gug

8251

RD WR D;Dp CE C/D RD WR D;Dy ¢cs Ag A RD WR D;Dy TS Ao A
T o] o] o] o]
I/ORT TI/OW @ A, |Ag I/ORT inow @ Ag |Ag A OR oW Ay |Ag | A
¢ DATA BUS 2
¢ CONTROL BUS !
§ ADDRESS BUS |
A, Ag As
NS NI ;7
DS1 DS2 DS1 DS2 DS1 DS2
8212 8212
#3 #1
mMD mMD MD
Vec Vee Vee

Figure 3-16. Typical 1/0 Interface.

3-10

A computer, no matter how sophisticated, can only
do what it is ““told” to do. One “‘tells” the computer what
to do via a series of coded instructions referred to as a Pro-
gram. The realm of the programmer is referred to as Soft-
ware, in contrast to the Hardware that comprises the actual
computer equipment. A computer’s software refers to all of
the programs that have been written for that computer.

When a computer is designed, the engineers provide
the Central Processing Unit (CPU) with the ability to per-
form a particular set of operations. The CPU is designed
such that a specific operation is performed when the CPU
control logicdecodes a particular instruction. Consequently,
the operations that can be performed by a CPU define the
computer’s Instruction Set.

Each computer instruction allows the programmer to
initiate the performance of a specific operation. All com-
puters implement certain arithmetic operations in their in-
struction set, such as an instruction to add the contents of
two registers. Often logical operations (e.g., OR the con-
tents of two registers) and register operate instructions (e.g.,
increment a register) are included in the instruction set. A
computer’s instruction set will also have instructions that
move data between registers, between a register and memory,
and between a register and an 1/O device. Most instruction
sets also provide Conditional Instructions. A conditional
instruction specifies an operation to be performed only if
certain conditions have been met; for example, jump to a
particular instruction if the result of the last operation was
zero. Conditional instructions provide a program with a
decision-making capability.

By logically organizing a sequence of instructions into
a coherent program, the programmer can ‘‘tell’” the com-
puter to perform a very specific and useful function.

The computer, however, can only execute programs
whose instructions are in a binary coded form (i.e., a series
of 1’s and 0’s), that is called Machine Code. Because it
would be extremely cumbersome to program in machine
code, programming languages have been developed. There

are programs available which convert the programming lan-
guage instructions into machine code that can be inter-
preted by the processor.

One type of programming language is Assembly Lan-
guage. A unique assembly language mnemonic is assigned to
each of the computer’s instructions. The programmer can
write a program (called the Source Program) using these
mnemonics and certain operands; the source program is
then converted into machine instructions (called the Object
Code). Each assembly language instruction is converted into
one machine code instruction (1 or more bytes) by an
Assembler program. Assembly languages are usually ma-
chine dependent (i.e., they are usually able to run on only
one type of computer).

THE 8080 INSTRUCTION SET

The 8080 instruction set includes five different types
of instructions:

o Data Transfer Group —move data between registers
or between memory and registers

e Arithmetic Group — add, subtract, increment or
decrement data in registers or in memory

e Logical Group — AND, OR, EXCLUSIVE-OR,
compare, rotate or complement data in registers
or in memory

e Branch Group — conditional and unconditional
jump instructions, subroutine call instructions and
return instructions

e Stack, 1/O and Machine Control Group — includes
1/O instructions, as well as instructions for main-
taining the stack and internal control flags.

Instruction and Data Formats:

Memory for the 8080 is organized into 8-bit quanti-
ties, called Bytes. Each byte has a unique 16-bit binary
address corresponding to its sequential position in memory.

The 8080 can directly address up to 65,536 bytes of mem-
ory, which may consist of both read-only memory (ROM)
elements and random-access memory (RAM) elements (read/
write memory).

Data in the 8080 is stored in the form of 8-bit binary
integers:
DATA WORD
|

D2 ! D1 IDo
LSB

D;' Dg 'Ds' D4 D3

MSB

When a register or data word contains a binary num-
ber, it is necessary to establish the order in which the bits
of the number are written. In the Intel 8080, BIT O is re-
ferred to as the Least Significant Bit (LSB), and BIT 7 (of
an 8 bit number) is referred to as the Most Significant Bit
(mMSB).

The 8080 program instructions may be one, two or
three bytes in length. Multiple byte instructions must be
stored in successive memory locations; the address of the
first byte is always used as the address of the instructions.
The exact instruction format will depend on the particular
operation to be executed.

Single Byte Instructions

D7l [| L Do | Op Code
Two-Byte Instructions
Byte One D7I ! ' ! ! ! ! Do | Op Code
[T 1 | | o
Byte Two | Dy Dg | Dataor
0 Address
Three-Byte Instructions
Byte One D7I l ! ! ! ! ! Do | Op Code
Byte Two D7] T bl Do |) Date
or
Byte Three 07' T T Dg |/ Address
Addressing Modes:

Often the data that is to be operated on is stored in
memory. When multi-byte numeric data is used, the data,
like instructions, is stored in successive memory locations,
with the least significant byte first, followed by increasingly
significant bytes. The 8080 has four different modes for
addressing data stored in memory or in registers:

e Direct —Bytes 2 and 3 of the instruction contain
the exact memory address of the data
item (the low-order bits of the address are
in byte 2, the high-order bits in byte 3).

® Register — The instruction specifies the register or
register-pair in which the data is located.

® Register Indirect — The instruction specifies a reg-
ister-pair which contains the memory

address where the data is located (the
high-order bits of the address are in the
first register of the pair, the low-order
bits in the second).

® Immediate — The instruction contains the data it-
self. This is either an 8-bit quantity or a
16-bit quantity (least significant byte first,
most significant byte second).

Unless directed by an interrupt or branch instruction,
the execution of instructions proceeds through consecu-
tively increasing memory locations. A branch instruction
can specify the address of the next instruction to be exe-
cuted in one of two ways:

® Direct —The branch instruction contains the ad-
dress of the next instruction to be exe-
cuted. (Except for the ‘RST’ instruction,
byte 2 contains the low-order address and
byte 3 the high-order address.)

® Register indirect — The branch instruction indi-
cates a register-pair which contains the
address of the next instruction to be exe-
cuted. (The high-order bits of the address
are in the first register of the pair, the
low-order bits in the second.)

The RST instruction is a special one-byte call instruc-
tion (usually used during interrupt sequences). RST in-
cludes a three-bit field; program control is transferred to
the instruction whose address is eight times the contents
of this three-bit field.

Condition Flags:

There are five condition flags associated with the exe-
cution of instructions on the 8080. They are Zero, Sign,
Parity, Carry, and Auxiliary Carry, and are each represented
by a 1-bit register in the CPU. A flag is “set” by forcing the
bit to 1; “reset” by forcing the bit to 0.

Unless indicated otherwise, when an instruction af-
fects a flag, it affects it in the following manner:

If the result of an instruction has the
value 0, this flag is set; otherwise it is
reset.

Zero:

If the most significant bit of the result of
the operation has the value 1, this flag is
set; otherwise it is reset.

Sign:

If the modulo 2 sum of the bits of the re-
sult of the operation is O, (i.e., if the
result has even parity), this flag is set;
otherwise it is reset (i.e., if the result has
odd parity).

If the instruction resulted in a carry
(from addition), or a borrow (from sub-
traction or a comparison) out of the high-
order bit, this flag is set; otherwise it is
reset.

Parity:

Carry:

Auxiliary Carry: If the instruction caused a carry out
of bit 3 and into bit 4 of the resulting
value, the auxiliary carry is set; otherwise
it is reset. This flag is affected by single
precision additions, subtractions, incre-
ments, decrements, comparisons, and log-
ical operations, but is principally used
with additions and increments preceding
a DAA (Decimal Adjust Accumulator)
instruction.

Symbols and Abbreviations:
The following symbols and abbreviations are used in
the subsequent description of the 8080 instructions:

SYMBOLS MEANING

accumulator Register A

addr 16-bit address quantity

data 8-bit data quantity

data 16 16-bit data quantity

byte 2 The second byte of the instruction
byte 3 The third byte of the instruction
port 8-bit address of an 1/0O device
rrir2 One of the registers A,B,C,D,E,H,L

DDD,SSS The bit pattern designating one of the regis-
ters A,B,C,D,E H,L (DDD=destination, SSS=
source):

DDD or SSS REGISTER NAME

111
000
001
010
011
100
101

rp One of the register pairs:

FrImMmMooOm>»

B represents the B,C pair with B as the high-
order register and C as the low-order register;

D represents the D,E pair with D as the high-
order register and E as the low-order register;

H represents the H,L pair with H as the high-
order register and L as the low-order register;

SP represents the 16-bit stack pointer

register.
RP The bit pattern designating one of the regis-
ter pairs B,D,H,SP:
RP REGISTER PAIR
00 B-C
01 D-E
10 H-L
11 SP

4-3

rh

rl

PC

SP

'm

The first (high-order) register of a designated
register pair.

The second (low-order) register of a desig-
nated register pair.

16-bit program counter register (PCH and
PCL are used to refer to the high-order and
low-order 8 bits respectively).

16-bit stack pointer register (SPH and SPL
are used to refer to the high-order and low-
order 8 bits respectively).

Bit m of the register r (bits are number 7
through O from left to right).

2,SP,CY,AC The condition flags:

:|¢*|+<<>1

NNN

Zero,

Sign,

Parity,

Carry,

and Auxiliary Carry, respectively.

The contents of the memory location or reg-
isters enclosed in the parentheses.

“Is transferred to”’

Logical AND

Exclusive OR

Inclusive OR

Addition

Two’s complement subtraction
Multiplication

*’Is exchanged with"

The one’s complement (e.g., (A))
The restart number 0 through 7

The binary representation 000 through 111
for restart number 0 through 7 respectively.

Description Format:

The following pages provide a detailed description of
the instruction set of the 8080. Each instruction is de-
scribed in the following manner:

1.

The MAC 80 assembler format, consisting of
the instruction mnemonic and operand fields, is
printed in BOLDFACE on the left side of the first
line.

. The name of the instruction is enclosed in paren-

thesis on the right side of the first line.

. The next line(s) contain a symbolic description

of the operation of the instruction.

. This is followed by a narative description of the

operation of the instruction.

. The following line(s) contain the binary fields and

patterns that comprise the machine instruction.

6. The last four lines contain incidental information
about the execution of the instruction. The num-
ber of machine cycles and states required to exe-
cute the instruction are listed first. If the instruc-
tion has two possible execution times, as in a
Conditional Jump, both times will be listed, sep-
arated by a slash. Next, any significant data ad-
dressing modes (see Page 4-2) are listed. The last
line lists any of the five Flags that are affected by
the execution of the instruction.

Data Transfer Group:

This group of instructions transfers data to and from
registers and memory. Condition flags are not affected by
any instruction in this group.

MOV r1, r2 (Move Register)
(r1) <— (r2)
The content of register r2 is moved to register r1.

0|1DIDID S|SIS

1

Cycles: 1

States: 5

Addressing: register
Flags: none

MOV r, M (Move from memory)
(r) <— ((H) (L))
The content of the memory location, whose address
is in registers H and L, is moved to register r.

I I I

1D|D !

0 D 1 1 0
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none
MOV M, r (Move to memory)

((H) (L) =— (r)

The content of register r is moved to the memory lo-

cation whose address is in registers H and L.

ol 11 1T 1 To]s!stls
Cycles: 2
States: 7

Addressing: reg. indirect
Flags: none

4-4

MVI r, data (Move Immediate)

(r) <— (byte 2)
The content of byte 2 of the instruction is moved to

register r. .
olTolpo'p'p|1"1'o
data
Cycles: 2
States: 7

Addressing: immediate
Flags: none

MVI M, data (Move to memory immediate)

((H) (L)) <~— (byte 2)

The content of byte 2 of the instruction is moved to
the memory location whose address is in registers H
and L.

1|0

0 ! 0] 1 ! 1 I 0 1
data
Cycles: 3
States: 10
Addressing: immed./reg. indirect
Flags: none
LXI rp, data 16 (Load register pair immediate)

(rh) <— (byte 3),

(rl) <=— (byte 2)

Byte 3 of the instruction is moved into the high-order
register (rh) of the register pair rp. Byte 2 of the in-
struction is moved into the low-order register (rl) of
the register pair rp.

ol of R! P | o

low-order data

high-order data

Cycles: 3
States: 10
Addressing: immediate
Flags: none

LDA addr

(Load Accumulator direct)

(A) <=— ((byte 3)(byte 2))

The content of the memory location, whose address
is specified in byte 2 and byte 3 of the instruction, is
moved to register A.

o lo 1 Ty Ty Tl ¢ Ty

low-order addr
high-order addr
Cycles: 4
States: 13

Addressing: direct
Flags: none

STA addr (Store Accumulator direct)

((byte 3)(byte 2)) <-— (A)

The content of the accumulator is moved to the
memory location whose address is specified in byte
2 and byte 3 of the instruction.

0|0|1|1 o o0 1 0

low-order addr

high-order addr

LHLD addr

Cycles: 4
States: 13
Addressing: direct
Flags: none

(Load H and L direct)

(L) <=— ((byte 3)(byte 2))

(H) <=— ((byte 3)(byte 2) + 1)

The content of the memory location, whose address
is specified in byte 2 and byte 3 of the instruction, is
moved to register L. The content of the memory loca-
tion at the succeeding address is moved to register H.

{
0'0'1'0]1|0|1I0

low-order addr

high-order addr

Cycles: 5
States: 16
Addressing: direct
Flags: none

45

SHLD addr

(Store H and L direct)

((byte 3)(byte 2)) <— (L)

((byte 3)(byte 2) + 1) <— (H)

The content of register L is moved to the memory lo-
cation whose address is specified in byte 2 and byte
3. The content of register H is moved to the succeed-
ing memory location.

olol1Tolo oty Ty

low-order addr
high-order addr
Cycles: b5
States: 16

Addressing: direct
Flags: none

LDAX rp (Load accumulator indirect)

(A) =— ((rp))

The content of the memory location, whose address
is in the register pair rp, is moved to register A. Note:
only register pairs rp=B (registers B and C) or rp=D
(registers D and E) may be specified.

o | rTp

0 1
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none
STAX rp (Store accumulator indirect)
((rp)) =— (A)

The content of register A is moved to the memory lo-
cation whose address is in the register pair rp. Note:
only register pairs rp=B (registers B and C) or rp=D

(registers D and E) may be specified.

ol o|r TP |lololi Ty
Cycles: 2
States: 7

Addressing: reg. indirect
Flags: none
XCHG (Exchange H and L with D and E)
(H) <— (D)
(L) =—(E)

The contents of registers H and L are exchanged with
the contents of registers D and E.

1'1'1'01'0'1'1
Cycles: 1
States: 4
Addressing: register
Flags: none

Arithmetic Group:

This group of instructions performs arithmetic oper-
ations on data in registers and memory.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Carry, and Auxiliary
Carry flags according to the standard rules.

All subtraction operations are performed via two's
complement arithmetic and set the carry flag to one to in-
dicate a borrow and clear it to indicate no borrow.

ADD r (Add Register)
(A) =— (A) +(r)
The content of register r is added to the content of the
accumulator. The result is placed in the accumulator.

1 l 0 ! 0 ! 0 l 0 S I S ! S
Cycles: 1
States: 4
Addressing: register
Flags: Z,S,P,CY,AC
ADD M (Add memory)

(A) =— (A) + ((H) (L))

The content of the memory location whose address
is contained in the H and L registers is added to the
content of the accumulator. The result is placed in
the accumulator.

ADCr (Add Register with carry)

(A) <— (A) + (r) + (CY)

The content of register r and the content of the carry
bit are added to the content of the accumulator. The
result is placed in the accumulator.

1ol ol ol [slsls
Cycles: 1
States: 4
Addressing: register
Flags: Z,S,P,CY,AC
ADC M (Add memory with carry)

(A) =— (A) + ((H) (L)) + (CY)

The content of the memory location whose address is
contained in the H and L registers and the content of
the CY flag are added to the accumulator. The result
is placed in the accumulator.

1|OIO 0]1111|0

Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z,S,P,CY,AC
ACI data (Add immediate with carry)

(A) <— (A) + (byte 2) + (CY)

The content of the second byte of the instruction and
the content of the CY flag are added to the contents
of the accumulator. The result is placed in the
accumulator.

Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z,S,P,CY,AC

ADI data
(A) =— (A) + (byte 2)

(Add immediate)

The content of the second byte of the instruction is
added to the content of the accumulator. The result
is placed in the accumulator.

1'1'0'0'0'1'1'0
data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z,S,P,CY,AC

(A) =— (A) —(r)

The content of register r
tent of the accumulator.
accumulator.

1 0 1 1 1 0
data
Cycles: 2
States: 7
Addressing: immediate
Flags: 2Z,S,P,CY,AC
SUBr (Subtract Register)

is subtracted from the con-
The result is placed in the

1 0 0 1 0 S S S
Cycles: 1
States: 4
Addressing: register
Flags: Z2,S,PCY,AC

SUBM (Subtract memory)
(A) =— (A) = ((H) (L))
The content of the memory location whose address is
contained in the H and L registers is subtracted from
the content of the accumulator. The result is placed

SBI data (Subtract immediate with borrow)
(A) <— (A) — (byte 2) — (CY)
The contents of the second byte of the instruction
and the contents of the CY flag are both subtracted
from the accumulator. The result is placed in the

in the accumulator.

1'0'0'1'0'1'1'0
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: 2,S,P,CY,AC

SUl data
(A) =— (A) — (byte 2)

(Subtract immediate)

accumulator.

1|1|0I1l1|1l1|0
data
Cycles: 2
States: 7
Addressing: immediate
Flags: 2,S,P,CY,AC

The content of the second byte of the instruction is
subtracted from the content of the accumulator. The
result is placed in the accumulator.

INR (Increment Register)
(r) <— (r) +1
The content of register r is incremented by one.

Note: All condition flags except CY are affected.

1T 1 To T To Tyg Tyt
data
Cycles: 2
States: 7
Addressing: immediate
Flags: 2,S,P,CY,AC
SBBr (Subtract Register with borrow)

ololo'!'ol'o|1'0'lo
Cycles: 1
States: 5
Addressing: register
Flags: Z,S,P,AC

INR M

(Increment memory)

(A) <=— (A) —(r) —(CY)

The content of register r and the content of the CY
flag are both subtracted from the accumulator. The
result is placed in the accumulator.

((H) (L)) =<— ((H) (L)) +1

The content of the memory location whose address
is contained in the H and L registers is incremented
by one. Note: All condition flags except CY are

P P

1 1 1 S S S
Cycles: 1
States: 4
Addressing: register
Flags: Z,S,P,CY,AC
SBB M (Subtract memory with borrow)

(A) =— (A) —((H) (L)) —(CY)

The content of the memory location whose address is
contained in the H and L registers and the content of
the CY flag are both subtracted from the accumula-
tor. The result is placed in the accumulator.

1IOIOI1|1|1|1|0
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z,S,P,CY,AC

affected.
0'0'1'1'0'1'0'0
Cycles: 3
States: 10
Addressing: reg. indirect
Flags: Z,SP,AC
DCR r (Decrement Register)

(r) =— (r) =1

The content of register r is decremented by one.
Note: All condition flags except CY are affected.

0 ! 0 D ! D ! D ! 1 ! 0 I 1
Cycles: 1 »
States: 5
Addressing: register
Flags: Z,S,P,AC

DCR M (Decrement memory)
((H) (L)) =— ((H) (L)) —1
The content of the memory location whose address is
contained in the H and L registers is decremented by
one. Note: All condition flags except CY are affected.

ol ol 1 T 1 To Ty ToTy
Cycles: 3
States: 10
Addressing: reg. indirect
Flags: 2Z,S,P,AC

INX rp (Increment register pair)
(rh) (rl) <— (rh) (rl) +1
The content of the register pair rp is incremented by
one. Note: No condition flags are affected.

I I I

Fo T Ty

0 0 R P 0
Cycles: 1
States: b5
Addressing: register
Flags: none
DCX rp (Decrement register pair)

(rh) (rl) <— (rh) (rl) —1
The content of the register pair rp is decremented by
one. Note: No condition flags are affected.

0 l 0 R l P 1 l 0 I 1 I 1
Cycles: 1
States: b5
Addressing: register
Flags: none
DAD rp (Add register pair to H and L)

(H) (L) =— (H) (L) + (rh) (rl)

The content of the register pair rp is added to the
content of the register pair H and L. The result is
placed in the register pair H and L. Note: Only the
CY flag is affected. It is set if there is a carry out of
the double precision add; otherwise it is reset.

0 l 0 R I P 1 I 0 ! 0 ! 1
Cycles: 3
States: 10
Addressing: register
Flags: CY

48

(Decimal Adjust Accumulator)
The eight-bit number in the accumulator is adjusted
to form two four-bit Binary-Coded-Decimal digits by
the following process:

DAA

1. If the value of the least significant 4 bits of the
accumulator is greater than 9 or if the AC flag
is set, 6 is added to the accumulator.

2. If the value of the most significant 4 bits of the
accumulator is now greater than 9, or if the CY
flag is set, 6 is added to the most significant 4
bits of the accumulator.

NOTE: All flags are affected.

o To e T q Ty

Cycles: 1
States: 4
Flags: Z,S,P,CY,AC

Logical Group:

This group of instructions performs logical (Boolean)
operations on data in registers and memory and on condi-
tion flags.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Auxiliary Carry, and
Carry flags according to the standard rules.

ANAr (AND Register)
(A) =— (A)A(r)
The content of register r is logically anded with the
content of the accumulator. The result is placed in
the accumulator. The CY flag is cleared.

1'0'1'0'0 SISIS
Cycles: 1
States: 4
Addressing: register
Flags: 2,S,P,CY,AC
"ANA M (AND memory)

(A) =— (AYA((H) (L)

The contents of the memory location whose address
is contained in the H and L registers is logically anded
with the content of the accumulator. The result is
placed in the accumulator. The CY flag is cleared.

1'0'1'0'0'1'1'0
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: 2Z,S,P,CY,AC

ANI data

(AND immediate)

(A) <=— (A) A (byte 2)

The content of the second byte of the instruction is
Iogiéally anded with the contents of the accumulator.
The result is placed in the accumulator. The CY and

AC flags are cleared.

1'1'1'0'0'1'1'0
data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z,S,P,CY,AC
XRATr (Exclusive OR Register)

(A) =— (A) ¥ (1)
The content of register r is exclusive-or'd with the
content of the accumulator. The result is placed in

the accumulator. The CY and AC flags are cleared.

g |

0 1 S S
Cycles: 1
States: 4
Addressing: register
Flags: Z2,S,P,CY,AC
XRA M (Exclusive OR Memory)

(A) =— (A) ¥ ((H) (L))

The content of the memory location whose address
is contained in the H and L registers is exclusive-OR’d
with the content of the accumulator. The result is
placed in the accumulator. The CY and AC flags are
cleared.

1 | 0 | 1 l 0 l 1 ! 1 I 1 ! 0
Cycles: 2
States: 7 _
Addressing: reg. indirect
Flags: Z2Z,S,P,CY,AC

XRI data

(Exclusive OR immediate)

(A) =— (A) ¥ (byte 2)

The content of the second byte of the instruction is
exclusive-OR’d with the content of the accumulator.
The result is placed in the accumulator. The CY and
AC flags are cleared.

1'1'1'0'1'1'1'0

data
Cycles: 2
States: 7
Addressing: immediate
Flags: ZS,P,CY,AC

ORA T

ORA M

4.9

(OR Register)

(A) =— (A) V(1)

The content of register r is inclusive-OR’d with the
content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

1 Tol 1T To s s ls
Cycles: 1
States: 4
Addressing: register
Flags: Z2Z,S,P,CY,AC

(OR memory)
(A) =— (A) V ((H) (L))

The content of the memory location whose address is
contained in the H and L registers is inclusive-OR’d
with the content of the accumulator. The result is
placed in the accumulator. The CY and AC flags are
cleared.

1 I 0 I 1 0 1
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z,S,P,CY,AC
ORI data (OR Immediate)

(A) =— (A) V (byte 2)

The content of the second byte of the instruction is
inclusive-OR’d with the content of the accumulator.
The result is placed in the accumulator. The CY and
AC flags are cleared.

1—r1|1|1l0|1l1|0

data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z,S,P,CY,AC

CMP r

(Compare Register)
(A) — ()
The content of register r is subtracted from the ac-
cumulator. The accumulator remains unchanged. The
condition flags are set as a result of the subtraction.
The Z flag is set to 1 if (A) = (r). The CY flag is set to
1if (A) < (r).

1 ! 0 ! 1 ! 1 ! 1 S ! S ! S
Cycles: 1
States: 4
Addressing: register
Flags: Z,,P,CY,AC

CMP M (Compare memory) RRC

(A) — ((H) (L))

The content of the memory location whose address
is contained in the H and L registers is subtracted
from the accumulator. The accumulator remains un-
changed. The condition flags are set as a result of the
subtraction. The Z flag is set to 1 if (A) = ((H) (L)).
The CY flag is set to 1 if (A) < ((H) (L)).

(Rotate right)
(Ap) =— (An1) ;. (A7) =— (AQ)
(CY) =— (Ap)

The content of the accumulator is rotated right one

position. The high order bit and the CY flag are both
set to the value shifted out of the low order bit posi-
tion. Only the CY flag is affected.

1 Po T Ty Ty T Ty Cycles: 1
States: 4
Cycles: 2 Flags: CY
States: 7
Addressing: reg. indirect
Flags: 2Z,5,P,CY,AC RAL (Rotate left through carry)
(An+1) =— (Ap) ; (CY) =— (A7)
(Ag) =— (CY)
The content of the accumulator is rotated left one
position through the CY flag. The low order bit is set
equal to the CY flag and the CY flag is set to the
value shifted out of the high order bit. Only the CY
CPI data (Compare immediate) flag is affected.
(A) — (byte 2)
The content of the second byte of the instruction is 0 ! 0 ! 0 ! 1 | 0 I ! | 1 | 1
subtracted from the accumulator. The condition flags
are set by the result of the subtraction. The Z flag is Cycles: 1
set to 1 if (A) = (byte 2). The CY flag is set to 1 if States: 4
(A) < (byte 2). Flags: CY
1] 1 I 1 | 1 | 1 | 1 | 1] 0 RAR (Rotate right through carry)
(AR} =— (Ap+1) ; (CY) =— (Ag)
data (A7) =— (CY)
The content of the accumulator is rotated right one
Cycles: 2 position through the CY flag. The high order bit is set
States: 7 to the CY flag and the CY flag is set to the value
Addressing: immediate shifted out of the low order bit. Only the CY flag is
Flags: Z,S,P,CY,AC affected.
0l0|0I1 l1 I1|1|1
Cycles: 1
States: 4
Flags: CY
RLC (Rotate left)
(Ant1) <— (Ap) i (Ag) =— (A7)
(CY) =— (A7) (Complement accumulator)

The content of the accumulator is rotated left one
position. The low order bit and the CY flag are both
set to the value shifted out of the high order bit posi-
tion. Only the CY flag is affected.

olololo ol Tyl

1
Cycles: 1
States: 4
Flags: CY

4-10

(A) <— (A)
The contents of the accumulator are complemented-
(zero bits become 1, one bits become 0). No flags are

affected.

0 ! 0 ! 1 ! 0 ! 1 ! 1 ! 1 I 1
Cycles: 1
States: 4

Flags: none

cMC (Complement carry)
(CY) =— (CY)
The CY flag is complemented. No other flags are
affected.
0'0'1'1'1'1'1'1
Cycles: 1
States: 4
Flags: CY
STC (Set carry)
(CY) =— 1

The CY flag is set to 1. No other flags are affected.

ol o T 1 T 1 T ol ¢ 141y

Cycles: 1
States: 4
Flags: CY

Branch Group:

This group of instructions alter normal sequential
program flow.

Condition flags are not affected by any instruction
in this group.

The two types of branch instructions are uncondi-
tional and conditional. Unconditional transfers simply per-
form the specified operation on register PC (the program
counter). Conditional transfers examine the status of one of
the four processor flags to determine if the specified branch
is to be executed. The conditions that may be specified are
as follows:

CONDITION cccC
NZ — not zero (Z=0) 000
Z — zero(Z=1) 001
NC — nocarry (CY =0) 010
C — carry (CY=1) 011
PO — parity odd (P =0) 100
PE — parity even (P=1) 101
P — plus(S=0) 110
M — minus(S=1) 111
JMP addr (Jump)

(PC) <— (byte 3) (byte 2)
Control is transferred to the instruction whose ad-

dress is specified in byte 3 and byte 2 of the current

instruction. .
1I1IOIOIOIOI1I1
low-order addr
high-order addr
Cycles: 3
States: 10
Addressing: immediate
Flags: none

Jcondition addr
If (CCC),

(Conditional jump)

(PC) <— (byte 3) (byte 2)
If the specified condition is true, control is trans-
ferred to the instruction whose address is specified in
byte 3 and byte 2 of the current instruction; other-

wise, control continues sequentially.

e

1'1 Cc

Cc 0

low-order addr

high-order addr

Cycles: 3
States: 10
Addressing: immediate
Flags: none
CALL addr (Call)

((SP) — 1) <«— (PCH)

((SP) —2) <— (PCL)

(SP) <— (SP) — 2

(PC) <— (byte 3) (byte 2)

The high-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by 2. Con-
trol is transferred to the instruction whose address is
specified in byte 3 and byte 2 of the current
instruction.

low-order addr

high-ordgr addr

Cycles: b

States: 17 \
Addressing: immediate/reg. indirect
Flags: none

Ccondition addr (Condition call)
If (CCC),
((SP) — 1) <— (PCH)
((SP) — 2) =— (PCL)
(SP) <«— (SP) —2
(PC) <— (byte 3) (byte 2)
If the specified condition is true, the actions specified
in the CALL instruction (see above) are performed;

otherwise, control continues sequentially.

1 | 1 C l C I C 1 ! 0 l 0
low-order addr
high-order addr
Cycles: 3/5
States: 11/17
Addressing: immediate/reg. indirect
Flags: none
RET (Return)

(PCL) =— ((SP));
(PCH) =— ((SP) +1);
(SP) =— (SP) + 2;

The content of the memory location whose address
is specified in register SP is moved to the low-order
eight bits of register PC. The content of the memory
location whose address is one more than the content
of register SP is moved to the high-order eight bits of
register PC. The content of register SP is incremented

by 2.
1'1'0'0'1'0'0'1
Cycles: 3
States: 10
Addressing: reg. indirect
Flags: none
Rcondition (Conditional return)
If (CCC),

(PCL) —— ((SP))

(PCH) —~— ((SP) + 1)

(SP) <=— (SP) +2
If the specified condition is true, the actions specified
in the RET instruction (see above) are performed;
otherwise, control continues sequentially.

COIOIO

1I1CIC

Cycles: 1/3
States: 5/11
Addressing: reg. indirect

Flags: none

RST n (Restart)
({SP) — 1) <— (PCH)
((SP) — 2) =— (PCL)
(SP) <-— (SP) — 2
(PC) <=— 8+ (NNN)
The high-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by two.
Control is transferred to the instruction whose ad-
dress is eight times the content of NNN.

1'1 N

N N 1 1 1
Cycles: 3
States: 11
Addressing: reg. indirect

Flags: none

151413121110 9 8 7 6 5 4 3 2 1 0
[oJofojofofofofofo]o[n[n]|n]ofo]o]

Program Counter After Restart

(Jump H and L indirect — move H and L to PC)
(PCH) =— (H)
(PCL) =— (L)
The content of register H is moved to the high-order
eight bits of register PC. The content of register L is
moved to the low-order eight bits of register PC.

PCHL

1'1'1'0'1'0"0'1
Cycles: 1
States: b
Addressing: register
Flags: none

4-12

Stack, 1/0, and Machine Control Group:

This group of instructions performs /O, manipulates
the Stack, and alters internal control flags.

Unless otherwise specified, condition flags are not
affected by any instructions in this group.

PUSH rp (Push)

((SP) — 1) <— (rh)

((SP) — 2) <— (rl)

(SP) <— (SP) —2

The content of the high-order register of register pair
rp is moved to the memory location whose address is
one less than the content of register SP. The content
of the low-order register of register pair rp is moved
to the memory location whose address is two less
than the content of register SP. The content of reg-
ister SP is decremented by 2. Note: Register pair
rp = SP may not be specified. -

1 I 1 R I P 0I 1 l 0 I 1
Cycles: 3
States: 11
Addressing: reg. indirect
Flags: none
PUSH PSW (Push processor status word)

((SP) — 1) =— (A)

((SP) —2)g <— (CY) ,((SP) —2)1 =—1

((SP) —2)yp =— (P), ((SP)—2)3<~— 0

((SP) —2)4 ~<— (AC), ((SP) — 2)g < O

((SP) —2)g =— (2), ((SP) —2)7 =— (S)

(SP) <— (SP) —2

The content of register A is moved to the memory
location whose address is one less than register SP.
The contents of the condition flags are assembled
into a processor status word and the word is moved
to the memory location whose address is two less
than the content of register SP. The content of reg-
ister SP is decremented by two.

" N ' O P P

Cycles: 3
States: 11
Addressing: reg. indirect
Flags: none

POP rp

413

FLAG WORD

(Pop)

(r) <— ((SP))

(rh) =— ((SP) + 1)

(SP) =— (SP) +2

The content of the memory location, whose address
is specified by the content of register SP, is moved to
the low-order register of register pair rp. The content
of the memory location, whose address is one more
than the content of register SP, is moved to the high-
order register of register pair rp. The content of reg-
ister SP is incremented by 2. Note: Register pair
rp = SP may not be specified.

POP PSW

1 I 1 R l P 0 ! 0 ! 0 '1
Cycles: 3
States: 10
Addressing: reg. indirect
Flags: none

(Pop processor status word)

(CY) <— ((SP))g

(P) <— ((SP))y

(AC) <— ((SP))4

(2) <— ((SP)g

(S) =— ((SP))7

(A) <— ((SP) + 1)

(SP) <— (SP) +2

The content of the memory location whose address
is specified by the content of register SP is used to
restore the condition flags. The content of the mem-
ory location whose address is one more than the
content of register SP is moved to register A. The
content of register SP is incremented by 2.

1I1I1|1IOIOIOI1

Cycles: 3
States: 10
Addressing: reg. indirect
Flags: Z,S,P,CY,AC

XTHL (Exchange stack top with H and L)
(L) <= ((SP))
(H) = ((SP) + 1)
The content of the L register is exchanged with the
content of the memory location whose address is
specified by the content of register SP. The content
of the H register is exchanged with the content of the
memory location whose address is one more than the
content of register SP,

El (Enable interrupts)
The interrupt system is

enabled following the execu-

tion of the next instruction.

IEELIRLE

1P by T o T Ty Ty
Cycles: 5
States: 18
Addressing: reg. indirect
Flags: none

SPHL (Move HL to SP)

(SP) =— (H) (L)

The contents of registers H and L (16 bits) are moved

to register SP.

Cycles: 1
States: 4
Flags: none
DI (Disable interrupts)

The interrupt system is disabled immediately fol-
lowing the execution of the DI instruction.

1 by Tl oy
Cycles: 1
States: 5
Addressing: register
Flags: none
IN port (Input)

(A) <«— (data)
The data placed on the eight bit bi-directional data
bus by the specified port is moved to register A.

1 g T by Ty g by Ty

port
Cycles: 3
States: 10
Addressing: direct
Flags: none
OUT port (Output)
(data) <— (A)

The content of register A is placed on the eight bit
bi-directional data bus for transmission to the spec-

1I1|1|1|0|0|1|1
Cycles: 1
States: 4
Flags: none
HLT (Halt)
The processor is stopped. The registers and flags are
unaffected.
0'1'1'1'0'1'1'0
Cycles: 1
States: 7
Flags: none

NOP (No op)

No operation is performed. The registers and flags

are unaffected.

Folololo

ol ol ol o
Cycles: 1
States: 4
Flags: none

ified port.
1 Tol g To oy ly
port
Cycles: 3
States: 10
Addressing: direct
Flags: none

414

INSTRUCTION SET

Summary of Processor Instructions

Instruction Codel1] Clock(2) Instruction Codel1) Clock(2!

Mnemonic Description D; Dg Ds Dg D3 D Dy Dg Cycles Mnemonic Description D; Dg Ds Dy D3 D Dy Dg Cycles
MOV,q, 2 Move register to register 0 1 D D DS S S 5 RZ Return on zero 1 1 0 0 1 0 0 O 5/11
MOV M,r Move register to memory 01 1 1 0 S S S 7 RNZ Return on no zero 1 1 0 0 0 0 ¢ o0 5/11
MOV r,M Move memory to register 0t D DDI1 1V 0 7 RP Return on positive 1 1 1 1 0 0 0O 5/1
HLT Halt 0 1 1 1 0 1 1 0 7 RM Return on minus 11 1 1 1 0 0 0 5/11
MVIr Move immediate register 00 DDD 11T 1O 7 RPE Return on parity even 11 1 0 1 0 0 0 5/1
MVIM Move immediate memory 00 1 1 0 1 1 0 10 RPO Return on parity odd 1 1 1 0 0 0 0 O 5/11
INR ¢ Increment register 00 D DD 1 0O 5 RST Restart 11 A A AT 11 n
DCRr Decrement register 0 0 b D D1 0 1 5 IN Input 11 0 1 1 0 1 1 10
INR M Increment memory 00 1 1 0 1 0 O 10 ouT Output 11 o 1 0 0 1 1 10
DCR M Decrement memory 00 1 1 0 1 0 1 10 LXI B Load immediate register 00 0 0 0 0 0 1 10
ADDr Add register to A 10 0 0 0 S S S 4 PairB & C
ADCr Add register to A with carry 1 0 0 0 1 8 S S 4 LXI D Load immediate register 00 0 100 0 1 10
SUBr Subtract register from A 1 0 0 1 0 § S S 4 PairD & E
SBBr Subtract register from A 10 0 1 1 8 § S 4 LXI H Load immediate register 00 1 0 0 0 0 1 10

with borrow PairH& L
ANA And register with A 1T 0 1 0 0 8 § S 4 LXI SP Load immediate stackpointer 0 0 1 1 0 0 0 1 10
XRA T Exclusive Or register with A 1 0 1t 0 1 S § S 4 PUSH B Push register Pair B & C on 1t 1 0 0 0 1 0 1 1
ORAT Or register with A 1 0 1 1 0 S § S 4 stack
CMPr Compare register with A 1 0 1 1 1 8 § § 4 PUSHD Push register Pair D & E on 1t 1 0 1 0 1 0 1 1
ADD M Add memory to A T 0 0 0 0 1 1 0 7 stack
ADCM Add memory to Awithcarry 1 0 0 0 1 1 1 0 7 PUSHH Push register Pair H & L on 11 1 0 0 1 0 1 n
SUB M Subtract memory from A 10 0 1 0 1t 1 0 7 stack
SBBM Subtract memory from A 10 0 1 1 1 1 0 7 PUSH PSW Push A and Flags 11 1 1 0 1 0 1 "

with borrow on stack
ANA M And memory with A 10 1 0 0 1 10 7 POPB Pop register pair B & C off 1 1 0 0 0 0 0 1 10
XRA M Exclusive Or memory with A 10 t 0 1 1 1 0 7 stack
ORA M Or memory with A Tt 0 1 1 0 1 10 7 POPD Pop register pair D & E off 1 1 0 1 0 0 0 1 10
CMP M Compare memory with A 1 0 1 11 1 10 7 stack
ADI Add immediate to A 11 0 0 0 1 1 0 7 POPH Pop register pair H & L off 11 1 0 0 0 0 1 10
ACI Add immediate to A with 11 0 0 11 10 7 stack

carry POPPSW Pop A and Flags 11 1t 1. 0 0 0 1 10
sul Subtract immediate from A 11 0o 1 0 1 1 0 7 off stack
SBI Subtract immediate from A 1 1 0 11 1 0 7 STA Store A direct 00 1 1 0 0 1 0 13

with borrow LDA Load A direct o0 1 1 1 0 1 O 13
ANI And immediate with A 11 10 0 1 1 0 7 XCHG Exchange D&E, H& L 11 1 1} 0 1 1 4
XRI Exclusive Or immediate with 11 10 1 1 1 0 7 Registers

A XTHL Exchange top of stack,H & L 1 1 1t 0 0 0 1 1 18
ORI Or immediate with A T 1 1 1 0 1 10 7 SPHL H & L to stack pointer 11 1t 1 1 0 0 1 5
CPI Compare immediate with A 11 1 11 1 1 0 7 PCHL H & L to program counter 1 1 1 0 1 0 0 1 5
RLC Rotate A left 00 0 0 0 1 11 4 DAD B AddB&CtoH& L 00 0 0 1 0 0 1 10
RRC Rotate A right 60 0 0 1 1 11 4 DAD D AddD&EtoH&L 00 0 t 1 0 0 1 10
RAL Rotate A left through carry o0 0 1 0 1 1 1 4 DAD H AddH& LtoH& L 00 t 0 1 0 0 1 10
RAR Rotate A right through 60 0 1 1 1 11 4 DADSP Add stack pointerto H & L 00 1 1 1 0 0 1 10

carry STAX B Store A indirect 00 0 0 0 0 1 0 7
JMP Jump unconditional 11 0 0 0 0 1 1 10 STAX D Store A indirect 00 0 1 0 0 1 0 7
i Jump on carry r 1t 0 1. 1 0 10 10 LDAXB Load A indirect 00 0 0 1 0 10 7
INC Jump on no carry 1 0 1.0 0 10 10 LDAXD Load A indirect 000 0 1 1 0 1 0 7
1z Jump on zero T 0 0 1 0 10 10 INX B Increment B & C registers 00 0 0 0 0 1 1 5
INZ Jump on no zero 110 0 0 0 10 10 INXD Increment D & E registers 00 0 1 0 0 1 1 5
JP Jump on positive 1 1 1 0 0 10 10 INX H Increment H & L registers 00 1t 0 0 0 1 1 5
™M Jump on minus Tt 1 10 10 10 INX SP Increment stack pointer 00 1 1 0 0 1 1 5
JPE Jump on parity even 11 0 1 0 10 10 DCX B Decrement B & C 00 0 0 1 0 1 1 5
JPO Jump on parity odd T 1 1 0 00 10 10 DCXD Decrement D & E 00 0 1 1 0 11 5
CALL Call unconditional 11 0 0 1t 1 0 1 17 DCXH Decrement H & L 00 1 0 1 0 1 1 5
cC Call on carry 110 1 1 1 00 nny DCX SP Decrement stack pointer 00 1 1 1 0 1 1 5
CNC Call on no carry Tt 1 0 1 0 1 0 O nn? CMA Complement A 00 1 0 1 1 1 1 4
cz Call on zero T 1 0 0 1 1 0 0 nmn STC Set carry 00 1 1 0 1 1 1 4
CNZ Call on no zero 1 1 0 0 0 1 0 O 1/17 cMC Complement carry o0 1 1 1 1 o1 4
cp Call on positive 11 1 1 0 1 0O nn? DAA Decimal adjust A 00 1t 0 0 1 1 1 4
cM™ Call on minus Tt 1 1 1 1.1 00 nni SHLD Store H & L direct 00 1 0 0 0 1 O 16
CPE Call on parity even 1 1 1t 0 1 1t 0 O 1n? LHLD Load H & L direct 00 1 0 1 0 10 16
CPO Call on parity odd 11 1 0 0 1 0 O nni El Enable Interrupts T 1 1 1 1 0 11 4
RET Return 11 0 0 1 0 0 1 10 DI, Disable interrupt 11 1T 1 00 1 1 4
RC Return on carry 1 1 0 1 1 0 0 O 5/11 NOP No-operation 00 0 0 0 0 0 O 4
RNC Return on no carry t 1 0 1t 0 0 0 O 5/11
NOTES: 1. DDD orSSS—-000B — 001 C—010D — 011 E—100 H — 101 L — 110 Memory — 111 A.

2. Two possible cycle times, (5/11) indicate instruction cycles dependent on condition flags.

4-15

CPU Group
8224 Clock Generatorcocivveunnennn 5-1
8228 System Controller, 5-7
8080A Central Processorcoiieueeenn. 513
8080A-1 Central Processor (1.3us) 520
8080A-2 Central Processor (1.54s) 5-24
M8080A Central Processor (-55° to +125°C) 5-29
ROMs
8702A Erasable PROM (266 x8) 5-37
8708/8704 Erasable PROM (1K x8) 5-45
8302 Mask ROM (266 x8)covvvur.n.. 5-51
8308 Mask ROM (1K x8) 5-59
8316A Mask ROM (2K x8)t 561
RAMs
8101-2 Static RAM (266 x4) 5-67
8111-2 Static RAM (266 x4) 5-71
8102-2 Static RAM (1K x 1) 575
8102A-4 Static RAM (1K x 1) 579
8107B-4 Dynamic RAM (4K x 1) 5-83
5101 Static CMOS RAM (256 x4) 591
8210 Dynamic RAM Driver it i i 595
8222 Dynamic RAM Refresh Controller 5-99
1/0
82128Bit1/OPortcciiiii it 5101
8255 Programmable Peripheral Interface 5113
8251 Programmable Communication Interface 5135
Peripherals
82050ne of Eight Decoder 5147
8214 Priority Interrupt Control Unit 5153
8216/8226 4-Bit Bi-Directional Bus Driver 5-163
Coming Soon
8253 Programmabile Interval Timer 5-169
8257 Programmable DMA Controller 5171

8259 Programmable Interrupt Controller 5173

CPU Group

8224 8080A-1
8228 8080A-2
8080A M8080-A

STSTB CLOCK 8224
GENERATOR
AND DRIVER

T 1 |

1 |
SYNC ¢2 1 RESET
RDY 8080A CPU

WR DO-D7 DBIN HLDA
0]

8228 SYSTEM
CONTROLLER

intel

Schottky Bipolar 8224

CLOCK GENERATOR AND DRIVER
FOR 8080A CPU

m Single Chip Clock Generator/Driver

for 8080A CPU

® Power-Up Reset for CPU
m Ready Synchronizing Flip-Flop
m Advanced Status Strobe

m Oscillator Output for External
System Timing

m Crystal Controlled for Stable System

Operation

® Reduces System Package Count

The 8224 is a single chip clock generator/driver for the 8080A CPU. It is controlled by a crystal, selected by
the designer, to meet a variety of system speed requirements.

Also included are circuits to provide power-up reset, advance status strobe and synchronization of ready.

The 8224 provides the designer with a significant reduction of packages used to generate clocks and timing

for 8080A.

PIN CONFIGURATION

BLOCK DIAGRAM

> xvau N
OSCILLATOR 1> osc [i2>
XTAL2 —
RESET 1 161 Vee f3> vank —
RESIN[|2 15] XTAL1 _|F¢1 B>
cLOCK
RDYIN[]3 14] xTAL2 GEN. D o5
+9
READY [J4 13|] TANK
‘ 8224 6,0 ;A 6(TTL[E6>
sync[|s 12| _Josc
(TTL) 6 1 2 P
¢ (TTU] [11 > swe svsTe [1>
STSTB 7 10 %2 N
-] [Z> resin "} D
ano[s 9] Voo SCHMITT
INPUT ¢]c @ RESET [1>
> rovin D a READY [4>
—c
PIN NAMES
RESIN RESET INPUT XTAL 1 CONNECTIONS
RESET | RESET OUTPUT XTAL 2 FOR CRYSTAL
RDYIN | READY INPUT TANK USED WITH OVERTONE XTAL
READY | READY OUTPUT osc OSCILLATOR OUTPUT
SYNC | SYNC INPUT ¢2 (TTL) 2 CLK (TTL LEVEL)
STSTB STATUS STB Vee +5V
(ACTIVE LOW) Voo 12V
(4] 8080 GND ov
2 CLOCKS

5-1

SCHOTTKY BIPOLAR 8224

FUNCTIONAL DESCRIPTION

General

The 8224 is a single chip Clock Generator/Driver for the
8080A CPU. It contains a crystal-controlled oscillator, a
“divide by nine’”” counter, two high-level drivers and several
auxiliary logic functions.

Oscillator

The oscillator circuit derives its basic operating frequency
from an external, series resonant, fundamental mode crystal.
Two inputs are provided for the crystal connections (XTAL1,
XTAL2).

The selection of the external crystal frequency depends
mainly on the speed at which the 8080A is to be run at.
Basically, the oscillator operates at 9 times the desired pro-
cessor speed.

A simple formula to guide the crystal selection is:

Crystal Frequency = L times 9

tcy
Example 1: (500ns tcy)
2mHz times 9 = 18mHz*
Example 2: (800ns tcy)

1.25mHz times 9 = 11.25mHz

Another input to the oscillator is TANK. This input allows
the use overtone mode crystals. This type of crystal gen-
erally has much lower “gain’” than the fundamental type so
an external LC network is necessary to provide the additional
“gain’’ for proper oscillator operation. The external LC net-
work is connected to the TANK input and is AC coupled to
ground. See Figure 4.

The formula for the LC network is:

1

2r\/LC

F=

The output of the oscillator is buffered and brought out
on OSC (pin 12) so that other system timing signals can be
derived from this stable, crystal-controlled source.

*When using crystals above 10mHz a small amount of frequency
“trimming” may be necessary to produce the exact desired fre-
quency. The addition of a small selected capacitance (3pF - 10pF)
in series with the crystal will accomplish this function.

Clock Generator

The Clock Generator consists of a synchronous “‘divide by
nine’’ counter and the associated decode gating to create the
waveforms of the two 8080A clocks and auxiliary timing
signals.

5-2

The waveforms generated by the decode gating follow a
simple 2-5-2 digital pattern. See Figure 2. The clocks gen-
erated; phase 1 and phase 2, can best be thought of as con-
sisting of ““units’’ based on the oscillator frequency. Assume
that one ““unit” equals the period of the oscillator frequency.
By multiplying the number of ““units’ that are contained in
a pulse width or delay, times the period of the oscillator fre-
quency, the approximate time in nanoseconds can be derived.

The outputs of the clock generator are connected to two
high level drivers for direct interface to the 8080A CPU. A
TTL level phase 2 is also brought out ¢2 (TTL) for external
timing purposes. It is especially useful in DMA dependant
activities. This signal is used to gate the requesting device on-
to the bus once the 8080A CPU issues the Hold Ack-
nowledgement (HLDA).

Several other signals are also generated internally so that
optimum timing of the auxiliary flip-flops and status strobe
(STSTB) is achieved.

OSCILLATOR

-1
TUNIT= osc_
FREQ.

~

PI— R T

EXAMPLE: (8080 ts, = 500ns)

0OSC = 18mHz/55ns

¢1 = 110ns (2 x 55ns)

¢2 = 275ns (5 x 55ns)
¢2-¢1 = 110ns (2 x 55ns)

SCHOTTKY BIPOLAR 8224

STSTB (Status Strobe)

At the beginning of each machine cycle the 8080A CPU is-
sues status information on its data bus. This information
tells what type of action will take place during that machine
cycle. By bringing in the SYNC signal from the CPU, and
gating it with an internal timing signal (¢1A), an active low
strobe can be derived that occurs at the start of each ma-
chine cycle at the earliest possible moment that status data
is stable on the bus. The STSTB signal connects directly to
the 8228 System Controller.

The power-on Reset also generates STSTB, but of course,
for a longer period of time. This feature allows the 8228 to
be automatically reset without additional pins devoted for
this function.

Power-On Reset and Ready Flip-Flops

A common function in 8080A Microcomputer systems is the
generation of an automatic system reset and start-up upon
initial power-on. The 8224 has a built in feature to accomp-
lish this feature.

An external RC network is connected to the RESIN input.
The slow transition of the power supply rise is sensed by an
internal Schmitt Trigger. Thiscircuit converts the slow trans-
ition into a clean, fast edge when its input level reaches a
predetermined value. The output of the Schmitt Trigger is
connected to a D" type flip-flop that is clocked with ¢$2D
(an internal timing signal). The flip-flop is synchronously
reset and an active high level that complies with the 8080A
input spec is generated. For manual switch type system Re-
set circuits, an active low switch closing can be connected
to the RESIN input in addition to the power-on RC net-
network.

The READY input to the 8080A CPU has certain timing
specifications such as ‘‘set-up and hold’’ thus, an external
synchronizing flip-flop is required. The 8224 has this feature
built-in. The RDYIN input presents the asynchronous “‘wait
request’”’ to the “D’’ type flip-flop. By clocking the flip-flop
with ¢2D, a synchronized READY signal at the correct in-
put level, can be connected directly to the 8080A.

The reason for requiring an external flip-flop to synchro-
nize the “‘wait request’’ rather than internally in the 8080
CPU is that due to the relatively long delays of MOS logic
such an implementation would ““rob” the designer of about
200ns during the time his logic is determining if a “wait”’
is necessary. An external bipolar circuit built into the clock
generator eliminates most of this delay and has no effect on
component count.

——————— !
! !
! I
| f
I i
| I
! I
1
' T |
| 1
= 1
| |
| |
| F— _.../ —_—
F=—
2rJ/LC
USED ONLY
FOR OVERTONE
CRYSTALS D
=T —7310pF
| | (ONLY NEEDED
L — 1 _ 1 ABOVE 10 MHz)
13| |a 15
- 22
12 i
OSC <-— 15
10
6 %2
¢, (TTL) «—
3 4 23
RDYIN —» READY
Vee 8224
8080A
cPU
T 2) 12
RESIN RESET
5
19
GND T SYNC
GND

7
L STSTB (TO 8228 PIN 1)

SCHOTTKY BIPOLAR 8224

D.C. Characteristics
Ta = 0°C to 70°C; Ve = +5.0V #5%; Vpp = +12V 5%,

Limits
Symbol Parameter Min. Typ. Max. Units Test Conditions
Ig Input Current Loading -.25 mA Vg = .45V
IR Input Leakage Current 10 MA VR =5.26V
Ve Input Forward Clamp Voltage 1.0 \' Ic =-bmA
ViL Input ““Low’’ Voltage .8 \Y Vce = 5.0V
V4 Input “High’’ Voltage 2.6 \Y% Reset Input
2.0 All Other Inputs
Vin-ViL REDIN Input Hysteresis .25 mV Vce = 5.0V
VoL Output “Low’’ Voltage .45 \" (#1.92), Ready, Reset, STSTB
loL =2.5mA
45 \Y All Other Outputs
loL = 15mA

VoH Output ““High” Voltage

¢1 . ¢2 9.4 \) IOH = —100IJ.A

READY, RESET 3.6 \ loy = -100pA

All Other Outputs 24 \Y loH =-1TmA
Iscl! Output Short Circuit Current -10 -60 mA Vo =0V

(All Low Voltage Outputs Only) Vec =5.0V
lcc Power Supply Current 115 mA
Ibp Power Supply Current 12 mA

Note: 1. Caution, ¢1 and ¢ output drivers do not have short circuit protection

CRYSTAL REQUIREMENTS

Tolerance: .005% at 0°C -70°C
Resonance: Series (Fundamental)*
Load Capacitance: 20-35pF
Equivalent Resistance: 75-20 ohms
Power Dissipation (Min): 4mW

*With tank circuit use 3rd overtone mode.

54

SCHOTTKY BIPOLAR 8224

A.C. Characteristics
Vee = +5.0V * 5%; Vpp = +12.0V + 5%; To = 0°Cto 70°C

Limits Test
Symbol Parameter Min. Typ. Max. Units Conditions
t1 $1 Pulse Width Z‘% - 20ns
t42 ¢, Pulse Width 5‘% - 36ns
tp1 ¢1 to ¢o Delay 0 ns
tp2 ¢o to ¢ Delay 2% - 14ns CL = 20pF to 50pF
tp3 ¢1 to ¢o Delay 2—t9ﬂ %c_y + 20ns
tR ¢1 and @5 Rise Time 20
tp ¢1 and ¢5 Fall Time 20
tpg2 $2 to ¢ (TTL) Delay -5 +15 ns ¢oTTL,CL=30
R1=300%2
R2=600Q
tbss 6 to STSTB Delay 6tey _ 30ns 6‘%
tpw STSTB Pulse Width Y _15ns STSTB, CL=15pF
9 R‘| =2K
RDYIN Setup Time to 4tcy Ry = 4K
t 5Ons - 7Y
DRS Status Strobe ns 9
RDYIN Hold Time 4tcy
tpRH =5 —
After STSTB 9
toR RDYIN or RESIN to Y _ e Ready & Reset
¢2 Delay 9 CL=10pF
R1=2K
R2=4K
teLk CLK Period tgﬂ
Maximum Oscillating
fmax Frequency 27 MHz
Cin Input Capacitance 8 pF Vce=+5.0V
Vpp=+12V
Vgias=2.5V
f=1MHz

Vee
TEST
CIRCUIT
Ry
INPUT ’

Ry

g

GND

5-5

SCHOTTKY BIPOLAR 8224

WAVEFORMS
® e— [—tF o
2
o1
A Al
62 3 Z e g o2
7 -
— tpg2 top2 —>
b2rrTL)
SYNC
(FROM 8080A) \ /

RDYIN OR RESIN

READY OUT

tbRH

RESET OUT

VOLTAGE MEASUREMENT POINTS: ¢1, ¢ Logic 0" = 1.0V, Logic 1" = 8.0V. All other signals measured at 1.5V.

EXAMPLE:

A.C. Characteristics (For tcy = 488.28 ns)
Ta = 0°C to 70°C; Vpp = +5V 25%; Vpp = +12V +5%.

Limi
Symbol Parameter Min. Tyl:ms Max. Units Test Conditions
41 ¢q Pulse Width 89 ns tcy=488.28ns
t42 @5 Pulse Width 236 ns
tp1 Delay ¢4 to ¢9 0 ns
tp2 Delay ¢5 to ¢4 95 ns |l ¢1 &2 Loaded to
tp3 Delay ¢4 to ¢ Leading Edges 109 129 ns Cp =20 to 50pF
t Output Rise Time 20 ns
t¢ Output Fall Time 20 ns
tpss ¢, to STSTB Delay 296 326 ns
tpy2 $2 to ¢ (TTL) Delay -5 +15 ns
tpw Status Strobe Pulse Wid:h__ 40 ns Ready & Reset Loaded
tpRs RDYIN Setup Time to STSTB -167 ns to 2mA/10pF
tpRH RDYIN Hold Time after STSTB 217 ns All measurements
toR READY or RESET 192 ns Le:z;“:::ci‘f‘i’e;sv
to ¢2 Delay otherwise.
fmax Oscillator Frequency 18.432°| MHz

intel® Schottky Bipolar 8228

SYSTEM CONTROLLER AND BUS DRIVER
FOR 8080A CPU

® Single Chip System Control for m User Selected Single Level Interrupt
MCS-80 Systems Vector (RST 7)

® Built-in Bi-Directional Bus Driver ® 28 Pin Dual In-Line Package
for Data Bus Isolation ®m Reduces System Package Count

® Allows the use of Multiple Byte
Instructions (e.g. CALL) for
Interrupt Acknowledge

The 8228 is a single chip system controller and bus driver for MCS-80. It generates all signals required to
directly interface MCS-80 family RAM, ROM, and 1/0O components.

A bi-directional bus driver is included to provide high system TTL fan-out. It also provides isolation of the
8080 data bus from memory and 1/0. This allows for the optimization of control signals, enabling the sys-

tems deisgner to use slower memory and |/O. The isolation of the bus driver also provides for enhanced
system noise immunity.

A user selected single level interrupt vector (RST 7) is provided to simplify real time, interrupt driven, small
system requirements. The 8228 also generates the correct control signals to allow the use of multiple byte
instructions (e.g., CALL) in response to an INTERRUPT ACKNOWLEDGE by the 8080A. This feature
permits large, interrupt driven systems to have an unlimited number of interrupt levels.

The 8228 is designed to support a wide variety of system bus structures and also reduce system package
count for cost effective, reliable, design of the MCS-80 systems.

PIN CONFIGURATION 8228 BLOCK DIAGRAM
7 j D DB
stste [11 281]v, o —> [—<— DB,
cc D, —>:] —><— DB,
7 D, —» e —><«— DB
2 27 2 2
HLDA [[1i7ow CcPY D, —s<— BI-DIRECTIONAL }—»<— DB
— - DATA o3 Dl BUS DRIVER pg’ [~ SYSTEM DATA BUS
wr[]3 26 [_] mEMW BUS s —> —><— DB,
. D5 ——d - DBs
pBin[|4 25 []1/0R D, — < ~<— DB,
O] Dy —+<—| | —><— DB,
pea [s 24 [] MEMR
pa[]s 23[]INTA DRIVER CONTROL
o7 [}7 22 [] BUSEN |
8228 o—— MEMR
p7[]s 21] pe
STATUS po—> MEMW
ps3[Jo 20 [] pB6 LATCH
p3[J10 19[Jos cating P—— TOR
ARRAY
o2 [1 18] pBS T b—— JOW
STSTB
p2 []12 7)o
O] DBIN b<—— BUSEN
osg []13 16 [] DB1 WR
HLDA INTA
GND [14 15[] og
PIN NAMES
D7-D0 DATA BUS (8080 SIDE) INTA INTERRUPT ACKNOWLEDGE
DB7-DB0 | DATA BUS (SYSTEM SIDE) HLDA HLDA (FROM 8080)
I/OR 1/0 READ WR WR (FROM 8080)
170w 1/0 WRITE BUSEN | BUS ENABLE INPUT
| MEMR MEMORY READ STSTB | STATUS STROBE (FROM 8224)
MEMW MEMORY WRITE Vee +5V
DBIN DBIN (FROM 8080) GND 0VOLTS

5-7

SCHOTTKY BIPOLAR 8228

FUNCTIONAL DESCRIPTION
General

The 8228 is a single chip System Controller and Data Bus
driver for the 8080 Microcomputer System. It generates all
control signals required to directly interface MCS-80™ family
RAM, ROM, and 1/0O components.

Schottky Bipolar technology is used to maintain low delay
times and provide high output drive capability to support
small to medium systems.

Bi-Directional Bus Driver

An eight bit, bi-directional bus driver is provided to buffer
the 8080 data bus from Memory and /0 devices. The 8080A
data bus has an input requirement of 3.3 volts (min) and
can drive (sink) a maximum current of 1.9mA. The 8228
data bus driver assures that these input requirements will
be not only met but exceeded for enhanced noise immunity.
Also, on the system side of the driver adequate drive cur-
rent is available (10mA Typ.) so that a large number of
Memory and 1/0 devices can be directly connected to the
bus.

The Bi-Directional Bus Driver is controlled by signals from
the Gating Array so that proper bus flow is maintained and
its outputs can be forced into their high impedance state
(3-state) for DMA activities.

Status Latch

At the beginning of each machine cycle the 8080 CPU issues
“status’’ information on its data bus that indicates the type
of activity that will occur during the cycle. The 8228 stores
this information in the Status Latch when the STSTB input
goes “low”. The output of the Status Latch is connected to
the Gating Array and is part of the Control Signal generation.

Gating Array

The Gating Array generates control signals (MEM R, MEM W,
1/0 R, I/O W and INTA) by gating the outputs of the Status
Latch with signals from the 8080 CPU (DBIN, VW%, and
HLDA).

The “read”’ control signals (MEM R, I/O R and INTA) are
derived from the logical combination of the appropriate
Status Bit (or bits) and the DBIN input from the 8080 CPU.

The “write’” control signals (MEM W, 1/0 W) are derived
from the logical combination of the appropriate Status Bit
(or bits) and the WR input from the 8080 CPU.

All Control Signals are “‘active low"’ and directly interface
to MCS-80 family RAM, ROM and 1/0 components.

The INTA control signal is normally used to gate the “inter-
rupt instruction port’” onto the bus. It also provides a
special feature in the 8228. If only one basic vector is need-
ed in the interrupt structure, such as in small systems, the
8228 can automatically insert a RST 7 instruction onto the
bus at the proper time. To use this option, simply connect
the INTA output of the 8228 (pin 23) to the +12 volt
supply through a series resistor (1K ohms). The voltage is
sensed internally by the 8228 and logic is ““set-up’’ so that
when the DBIN input is active a RST 7 instruction is gated
on to the bus when an interrupt is acknowledged. This
feature provides a single interrupt vector with no additional
components, such as an interrupt instruction port.

When using CALL as an Interrupt instruction the 8228
will generate an INTA pulse for each of the three bytes.

The BUSEN (Bus Enable) input to the Gating Array is an
asynchronous input that forces the data bus output buffers
and control signal buffers into their high-impedance state
if it is a “one”. If BUSEN is a “zero’’ normal operation of
the data buffer and control signals take place.

8228 BLOCK DIAGRAM

Do
Dy —>e—]
Dy —a—

cPU
D, —»<—| BI-DIRECTIONAL
D;‘lLA D: —+<] BUSDRIVER

DE——><—
Dg —>=—]
Dy ==

|—><— DB,
—«— DB.l
|—»<— DB,
|—><— DB,
|—><— DB
|—»<— DBg
—><— DBy
|—><— DB,

SYSTEM DATA BUS

DRIVER CONTROL

o MEM R
STATUS b~ WEMW
LATCH
GATING [° oR
ARRAY
T o——— I/OW
STSTB
DBIN BUSEN
WR
HLDA INTA

5-8

SCHOTTKY BIPOLAR 8228

—|1s
WRlo
peIN[Z
WoLAREL |4 X3
15
sosoa Do[l0 »2 —><—:z B, |
cPU D, |2 D8,
Dz 8 12 --1—><—DBZ
[N . 8228 S . < DB,
oIz 6]eI-DIRECTIONAL |5 pe. [-DATABUS
4 BUSDRIVER | [o=>+—DB4
ola 19 1 o
] Bg
o.ls 21 20 DB
6 8 > 6
D, 6 —><—DB, J

_ 1
(FROM 8224) STATUS STROBE———»0 CONTROL ©h™ . MEMW [~ CONTROL BUS

—_— 22
BUSEN —O o——— I/oOW

STATUS WORD CHART
TYPE OF MACHINE CYCLE
| : 1
& @
(9
3 S/ /&
N S ‘57 Q /& & Q§l §§'
Q A
s/ 88 /s/&/§/5/&/F//E/&/ES
v/ &8 c’?\éékQS&%g&éé’@é@f
R & S /S/ &/ S S S ~
& N L/S/ S/ &/ &/ &/ &/8 /X /$&&
Q & N N \J S A
S /E/F/&)5/)6)S//S/ &/
N RSN
S S
/® STATUS WORD
DIPIB®|®|®|®|®]|
Do| INTA | o |o|lo|lo]o|o|lo|1]o0o |1
D1 WO 1 1 0 1 o | 1 0o | 1 1 1
Do | stack | o o[o |1 |1]ofo]Jo]lo] o
D3| HTA | o |oflolo|lofjof[o]ol] 1|1
Da|] outr [o ol ofoflo]o[1]o]o] o
ops | My |1 |lo|loflo|lofoflo]| 1|0
De | INP oo | o|]olo|l1]oflo]o] o
p7| MEMR | 1 |1 o[1 Jofofolo] 1] o
L INTA |
(NONE)
INTA
I/1ow
I/OR | CONTROL
MEM W SIGNALS
MEM R
MEMW
MEM R
MEMR

5-9

SCHOTTKY BIPOLAR 8228

WAVEFORMS

e TN/
_/

STATUS STROBE \\ /

8080 DATA BUS Z‘(
tes < tsH
DBIN y
RR
INTA, IOR, MEMR \t

toc >

HLDA
[tHp
INTA, IOR, MEMR \
DURING HLDA
‘DS ->l<~ ton
SYSTEMBUSDURINGREAD _ _ _ _ _ _ _ _ __ | I S) NS I N S U

8080 BUS DURING READ ¢ == == = = =— — — =— =— —_t——— X W Drem—e—eemee e e e ———

WR

{OW OR MEM W

8080 BUS DURING WRITE i
wo
SYSTEM BUS DURINGWRITE — — — — — — — — — = r <

—> g [+
SYSTEM BUS ENABLE
- te | te r
R ——
SYSTEMBUSOUTPUTS — — — — — — — — — — — — — — — <] e, — ——— —_
VOLTAGE MEASUREMENT POINTS: Dg-D7 (when outputs) Logic “0” = 0.8V, Logic ‘1" = 3.0V. All other signals measured
at 1.5V.

A.C. Characteristics Tp = 0°C to 70°C; V¢ = 5V #5%.

Limits

Symbol Parameter Min. | Max. | Units Condition
tpwy Width of Status Strobe 22 ns

tss Setup Time, Status Inputs Dg-Dy 8 ns

tsH Hold Time, Status Inputs Dg-D5 5 ns

tpc Delay from STSTB to any Control Signal 20 60 ns CL = 100pF
tRR Delay from DBIN to Control Outputs 30 ns CL = 100pF
tRE Delay from DBIN to Enable/Disable 8080 Bus 45 ns CL = 25pF
tRD Delay from System Bus to 8080 Bus during Read 30 ns CL = 256pF
tWR Delay from WR to Control Outputs 5 45 ns CL = 100pF
twe Delay to Enable System Bus DBg-DB7 after STSTB 30 ns CL = 100pF
twp Delay from 8080 Bus Dg-D7 to System Bus ns CL = 100pF

DBg-DB7 during Write 5 40

te Delay from System Bus Enable to System Bus DBy-DBy 30 ns Cyp = 100pF
tHD HLDA to Read Status Outputs 25 ns

tps Setup Time, System Bus Inputs to HLDA 10 ns

tpH Hold Time, System Bus Inputs to HLDA 20 ns Cp = 100pF

5-10

SCHOTTKY BIPOLAR 8228

D.C. Characteristics T = 0°C to 70°C; Vg = 5V £5%.

Limits
Symbol Parameter Min. |Typ.[1]| Max. Unit Test Conditions
Ve Input Clamp Voltage, All Inputs .75 | -1.0 \Y Vce=4.75V; Ic=-bmA
I Input Load Current,
STSTB 500 MA Vec=5.25V
D, & Dg 750 MA Vg =0.45V
Dg, D¢, D4, Dg, HA
& Dy 250
All Other Inputs 250 uA
Ir Input Leakage Current
STSTB 100 MA Vcc=5.25V
DB(-DB; 20 MA VR =5.25V
All Other Inputs 100 uA
VTH Input Threshold Voltage, All Inputs 0.8 2.0 \ Vee=5V
lec Power Supply Current 140 190 mA Vce=5.25V
VoL Output Low Voltage,
Do-Dy A5 v Vce=4.75V; loL=2mA
All Other Outputs .45 \ loL = 10mA
VoH Output High Voltage,
Dg-D7 3.6 3.8 \Y% Vce=4.75V; lop=-10LA
All Other Outputs 2.4 \Y loH =-1TmA
los Short Circuit Current, All Outputs 15 90 mA Vce=5V
lo(off) Off State Output Current,
All Control Outputs 100 HA Vce=5.25V; Vp=5.25
-100 LA Vo=.45V
INT INTA Current 5 mA (See Figure below)
Note 1: Typical values are for Tp = 250C and nominal supply voltages.

Capacitance This parameter is periodically sampled and not 100% tested.

Limits
Symbol Parameter Min. | Typ.[1] Max. | Unit
Cin Input Capacitance 8 12 pF
Output Capacitance
Cour Control Signals / 15 pF
1/0 Capacitance
0 (D or DB) 8 15| pF

TEST CONDITIONS: Vgjas = 2.5V, Voc=5.0V, Ta = 25°C, f = 1MHz.

Note 2: For Dg-D7: R1 = 4K, Ry = =Q,

C = 25pF. For all other outputs:
R1 =500, Ry = 1KQ, C_= 100pF.

TEST CIRCUIT!)

8228

INTA

+12v

1KQ £10%
<

©)

It

O

INTA Test Circuit (for RST 7)

SCHOTTKY BIPOLAR 8228

2 25
GND, ———= Ay
+BV ————— A.I 26
1 27
BV ————— A,
28 29
12V ———» A,
30
Ay
P E
5
32
As
8080A 33
cPU A,
A 34
13 ®l3s
SYSTEM DMA REQ.————| HOLD Ay
1
A10
P KLU
14 A11 3
SYSTEM INT. REQ. ———| INT 12| g
A
13
16 39
INT. ENABLE <———] INTE Ay
36
A15 18
WR o
17

DBIN

XTA
o™ 2
HDLA
14 15 2|43

13 1 22
TANK ——> [N 10 15
12 10 15 Dy D8
0SC <«—— [b 9 17
6 1
6y (TTL) =— 24 8 12
3 8224 4 23 WAIT Pz 7 10 6228
RDYIN ——» READY D BI-DIRECTIONAL
CLOCK 3 BUS DRIVER
, | GENERATOR) o B 6
—_ 1 4
RESiN—»o PRIVER L1 RESET o |4 19
5
+12V —» 5 21
16 Dg
+5V ——»| 5 19 6 8
8 SYNC D,
GND ——» 2F————— -
+5V —>
7 14
GND ——>|
STATUS STROBE 1 SYSTEM
CONTROL

BUSEN ————— O

— ADDRESS BUS

— DATABUS

| 8
L

o———

26

OZ—. MEM W [— CONTROL BUS
5

o———

8080A CPU Standard Interface

5-12

intel’ silicon Gate MOS 8080A
SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR

The 8080A is functionally and electrically compatible with the Inte/® 8080.

s TTL Drive Capability = Sixteen Bit Stack Pointer and Stack
= 2 s Instruction Cvel Manipulation Instructions for Rapid
s Instruction Cycle Switching of the Program Environment
= Powerful Problem Solving = Decimal,Binary and Double
Instruction Set Precision Arithmetic
= Six General Purpose Registers = Ability to Provide Priority Vectored
and an Accumulator Interrupts
= Sixteen Bit Program Counter for = 512 Directly Addressed 1/0 Ports
Directly Addressing up to 64K Bytes
of Memory

The Intel® 8080A is a complete 8-bit parallel central processing unit (CPU). It is fabricated on a single LS| chip using Intel’s
n-channel silicon gate MOS process. This offers the user a high performance solution to control and processing applications.

The 8080A contains six 8-bit general purpose working registers and an accumulator. The six general purpose registers may be
addressed individually or in pairs providing both single and double precision operators. Arithmetic and logical instructions set
or reset four testable flags. A fifth flag provides decimal arithmetic operation.

The 8080A has an external stack feature wherein any portion of memory may be used as a last in/first out stack to store/
retrieve the contents of the accumulator, flags, program counter and all of the six general purpose registers. The sixteen bit
stack pointer controls the addressing of this external stack. This stack gives the 8080A the ability to easily handle multiple
level priority interrupts by rapidly storing and restoring processor status. It also provides almost unlimited subroutine nesting.

This microprocessor has been designed to simplify systems design. Separate 16-line address and 8-line bi-directional data
busses are used to facilitate easy interface to memory and 1/0. Signals to control the interface to memory and 1/O are pro-
vided directly by the 8080A. Ultimate control of the address and data busses resides with the HOLD signal. It provides the
ability to suspend processor operation and force the address and data busses into a high impedance state. This permits OR-
tying these busses with other controlling devices for (DMA) direct memory access or multi-processor operation.

. DpiDg
.. BI-DIRECTIONAL
U pataBUS

DATA BUS
| BUFFER/LATCH [T

_ INTERNAL DATABUS

i L B O 4N N
|ACCUMULATOR . * 7 TINSTRUCTION
ml‘ , e | recisTer @f @ MULTIPLEXER | -
' — e e w) z w}
S 4
FLAG = ' TEMP REG. TEMP REG.
1p-FLOPS [, . ~
ACCUMULATOR e : @ il
LATCH (8 , REG. REG. >
N ARITHMETIC INSTRUCTION D @ E @
LOGIC DECODER REG. REG.
N\ UNIT MACHINE H 8 T o]
(ALU) CYCLE REG. REG.
(8 ENCODING e
STACK POINTER
e
PROGRAM COUNTER

.| INCREMENTER/DECREMENTER |°
ADDRESS LATCH (16)}

b

TIMING
AND

CONTROL LT
-

DATA BUS INTERRUPT HOLD WAIT
WRITE CONTROL CONTROL CONTROL CONTROL SYNC CLOCKS

INTE. INT? HOLD HOLDWAIT I;'smc«:«m.?
ACK . READY

5-13

‘SILICON GATE MOS 8080A

8080A FUNCTIONAL PIN DEFINITION

The following describes the function of all of the 8080A 1/0 pins.

Several of the descriptions refer to internal timing periods.

A1s5.Aq (output three-state)

ADDRESS BUS; the address bus provides the address to memory
{up to 64K 8-bit words) or denotes the 1/0 device number for up
to 256 input and 256 output devices. Ag is the least significant
address bit.

D3-Dg (input/output three-state)

DATA BUS; the data bus provides bi-directional communication
.between the CPU, memory, and /O devices for instructions and
data transfers. Also, during the first clock cycle of each machine
cycle, the 8080A outputs a status word on the data bus that de-
scribes the current machine cycle. D is the least significant bit.

SYNC (output)
SYNCHRON'IZING SIGNAL; the SYNC pin provides a signal to
indicate the beginning-of each machine cycle.

DBIN (output) o v .
DATA BUS IN; the DBIN signal indicates to external circuits that
the data bus is in the input mode. This signal should be used to

enable the gating of data onto the 8080A data bus from memory
or 1/0.

READY (input)

READY; the READY signal indicates to the 8080A that valid
memory or input data is available on the 8080A data bus. This
signal is used to synchronize the CPU with slower memory or 1/0
devices. If after sending an address out the 8080A does not re-
ceive a READY input, the 8080A will enter a WAIT state for as
long as the READY line is low. READY can also be used to single
step the CPU.

WAIT (output)

WAIT; the WAIT signal acknowledges that the CPU is in a WAIT
state.

WR (output)
WRITE; the WR signal is used for memory WRITE or 1/0 output

control. The data on the data bus is stable while the WR signal is
active low (WR = 0).

-HOLD (input)

HOLD; the HOLD signal requests the CPU to enter the HOLD
state. The HOLD state allows an external device to gain control
of the 8080A address and data bus as soon as the 8080A has com-
pleted its use of these buses for the current machine cycle. It is
recognized under the following conditions:

® the CPU is in the HALT state.

® the CPU isin the T2 or TW state and the READY signal is active.

As a result of entering the HOLD state the CPU ADDRESS BUS .

(A15-Ag) and DATA BUS (D7-Dg) will be in their high impedance
state. The CPU acknowledges its state with the HOLD AC-
KNOWLEDGE (HLDA) pin.

HLDA (output)
HOLD ACKNOWLEDGE; the HLDA signal appears in response
to the HOLD 'signal and indicates that the data and address bus

Ao O ~ 40 —0 Aq;
GND 0— 2 39 —=0 Aqq
D, O+—=3 38 |—=0 Ag3
Dy O+—>{4 37 —=0 Ay
Dg O+—>|5 36 F—>0 A5
D, O=—=16 35 —=0 A
D, O=—s{7 34 |—0 Ag
nor7fs INTEL o

-] 6
D; o«—=]10 8080A 31}—o0A;
-5V 00— 11 30 —0 A,
RESET o—=]{ 12 29 |—0 A3
HOLD o—=] 13 28 }—o +12v
INT o0—] 14 27 —»0 A,
%2 O0—] 15 26 |—0 A,
INTE o«—] 16 25 f—=0 A
DBIN O<—{ 17 24 —=0 WAIT
WR O<+—{ 18 23 j=—0 READY
SYNC O<=—] 19 22 f=—o0 ¢,
+5v 0—— 20 21 —>0 HLDA

Pin Configuration

will go to the high impedance state. The HLDA signal begins at:

® T3 for READ memory or input.

® The Clock Period following T3 for WRITE memory or OUT-
PUT operation.

In either case, the HLDA signal appears after the rising edge of ¢4
and high impedance occurs after the rising edge of ¢.

INTE (output)

INTERRUPT ENABLE; indicates the content of the internal inter-
rupt enable flip/flop. This flip/flop may be set or reset by the En-
able and Disable Interrupt instructions and inhibits interrupts

from being accepted by the CPU when it is reset. It is auto-
matically reset (disabling further interrupts) at time T1 of the in-

struction fetch cycle (M1) when an interrupt is accepted and is
also reset by the RESET signal.

INT (input)

INTERRUPT REQUEST; the CPU recognizes an interrupt re-
quest on this line at the end of the current instruction or while
halted. If the CPU is in the HOLD state or if the Interrupt Enable
flip/flop is reset it will not honor the request.

RESET (input)[1]

RESET; while the RESET signal is activated, the content of the
program counter is cleared. After RESET, the program will start
at location 0 in memory. The INTE and HLDA flip/flops are also
reset. Note that the flags, accumulator, stack pointer, and registers
are not cleared.

Vss Ground Reference. -
Vop +12 % 5% Volts.
Vec +5 5% Volts.
VB -5 #5% Volts (substrate bias).
1,92 2 externally supplied clock phases. (non TTL compatible)

5-14

SILICON GATE MOS 8080A

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias e 0°C to +70°C
Storage Temperature -65°C to +150°C
All Input or Output Voltages
With RespecttoVgg -0.3V to +20V
Vece, Vop and Vgg With Respect to Vgg -0.3V to +20V
“Power Dissipationc. ... 1.5W

*COMMENT: Stresses above those listed under "Absolute Maxi-
mum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the de-
vice at these or any other conditions above those indicated in
the operational sections of this specification is not implied. E x-
posure to absolute maximum rating conditions for extended
periods may affect device reliability.

D.C. CHARACTERISTICS
Ta =0°C to 70°C, Vpp = +12V + 5%, Ve = +6V + 5%, Vgg = -5V * 5%, Vgs = OV, Unless Otherwise Noted.

Symbol Parameter Min. Typ. Max. Unit Test Condition
ViLc Clock Input Low Voltage Vgs—1 Vss+0.8 \Y
ViHe Clock Input High Voltage 9.0 Vpp+1 \Y
ViL Input Low Voltage Vss—1 Vss+0.8 \Y
Viu Input High Voltage 3.3 Veet1 \Y%
VoL Output Low Voltage 0.45 Vv | loL = 1.9mA on all outputs,
VoH Output High Voltage 3.7 v lon =-150uA.
Ipp (av) | Avag. Power Supply Current (Vpp) 40 70 mA]
| Avg. Power Supply Current (V¢c) 60 80 A Operation
CC (AV) 9. pply cc m Ty = .48 usec
Igg (av) | Avg.Power Supply Current (Vgg) .01 1 mA]
I Input Leakage 10 HA Vss < Vin < Vee
leL Clock Leakage _ 10 | pA | Vgs<Vcrock < Vpp
Ip (2] Data Bus Leakage in Input Mode -100 HA Vs <V|N SVgs+0.8V
“20 | mA | Ve +0.8VSViN <Vee
Address and Data Bus Leakage +10 Vapbbr/pATA = Vee
FL During HOLD 2100 | HA
iring VADDR/DATA = Vss + 0.45V
CAPACITANCE TYPICAL SUPPLY CURRENT VS,
T, =25°C Ve =Vpp = Vss =0V, Vgg =-5V .5 TEMPERATURE, NORMAL IZED. @]
Symbol Parameter Typ. Max. Unit Test Condition E
Co Clock Capacitance 17 | 25 | pof | f=1MHz :
2
Cin Input Capacitance 6 10 pf Unmeasured Pins g 1
a
Cout Output Capacitance 10 20 pf Returned to Vgg 3 i
NOTES:
1. The RESET signal must be active for a minimum of 3 clock cycles. 0'50 +25 +50 +75
2. When DBIN is high and VN > Vi an internal active pull up will .
be switched onto the Data Bus. AMRIENT TEMPERATURE (°Ci
3. Al supply / ATp =-0.45%/°C.
DATA BUS CHARACTERISTIC
DURING DBIN
MAX - — — — — g —
oL
% Vee
Vin

5-1%

SILICON GATE MOS 8080A

A.C. CHARACTERISTICS
Ta =0°C to 70°C, Vpp = +12V £ 5%, Ve = +5V £ 5%, Vgg = -5V * 5%, Vgg = OV, Unless Otherwise Noted

Symbol Parameter Min. | Max. | Unit Test Condition
tey[3! | Clock Period 0.48 | 2.0 | usec
t., t Clock Rise and Fall Time 0 50 | nsec
ty1 ¢q Pulse Width 60 nsec
t2 ¢ Pulse Width 220 nsec
tD1 Delay ¢4 to ¢o 0 nsec
-~ tp2 Delay ¢5 to ¢ 70 nsec
tp3 Delay ¢; to ¢ Leading Edges 80 nsec »
tpa [2] | Address Output Delay From ¢, 200 | nsec } ¢, = 100pf
tpp [2] | Data Output Delay From ¢, 220 | nsec
tpc[2) | Signal Output Delay From ¢y, or ¢, (SYNC, WR.WAIT, HLDA) 120 | nsec
tpr (2] | DBIN Delay From ¢- 25 | 140 | nsec } €L = 80pf
tp[1! Delay for Input Bus to Enter Input Mode tpr | nsec
tpsi Data Setup Time During ¢4 and DBIN 30 nsec

TIMING WAVEFORMS "%

(Note: Timing measurements are made at the following reference voltages: CLOCK ““1’’ = 8.0V

“0"” =1.0V; INPUTS “1” = 3.3V, “0"” = 0.8V; OUTPUTS ““1" = 2.0V, “0" = 0.8V.)

tey

) S o\

—>tp

“ \
<«—tp2—»
* 7 k 1\] /
1—'03*] —4 o2 [<—
i £ — $
o b w— B B
*tpa taw
t, P 1 Ll [—1,
- o] el g i oy .
. - I v
D,D, 1______.__ - DATAN .. IR i . D_AlA_OET“_’
- —>| tog1 [«— — tow >
SYNC* X_ tos2—>1
—»{ tyc |=— —(tpc I<—
DBIN
F—‘DFI < tor |
WA ' LW ,
- tocfe—s|
ty —»l [e— :
"
READY (@) L @
tas . trs o le—n|
WAIT ty—> |-
toc—> -— - H | |-
HOLD @[X
HLDA
4
4
- I - g
INT €l
Ys
ty —» e
INTE

5-16

SILICON GATE MOS 8080A

A.C. CHARACTERISTICS (Continued)
Ta = 0°C to 70°C, Vpp = +12V £ 5%, Ve = +5V £ 5%, Vgg = -5Vt 5%, Vgg = OV, Unless Otherwise Noted

Symbol Parameter Min. | Max. | Unit Test Condition
tps2 Data Setup Time to ¢ During DBIN 150 nsec
tpu (1! | Data Hold Time From ¢ During DBIN [l ‘ nsec
tel2 INTE Output Delay From ¢- 200 | nsec C = 50pf
trs READY Setup Time During ¢2 120 nsec
tHs HOLD Setup Time to ¢2 140 nsec
tis INT Setup Time During ¢ (During ¢q in Halt Mode) 120 nsec
tH Hold Time From ¢, (READY, INT, HOLD) 0 nsec
teD Delay to Float During Hold (Address and Data Bus) 120 | nsec
taw(2] | Address Stable Prior to WR (5] nsec ||
tpw[2! | Output Data Stable Prior to WR (6] nsec
twp(2! | Output Data Stable From WR ‘ (7] nsec
" tW'AF.?],- 7 Address Stablg FromWW_R - v (7] nsec B gt:;gg?;f:w_ﬁ‘,d;eEBAD,aBaBlN
tyr(2) | HLDA to Float Delay t:3] nsec
twe (2! | WR to Float Delay &)] nsec
tan (2] | Address Hold Time After DBIN During HLDA -20 nsec | |
NOTES:

1. Data input should be enabled with DBIN status. No bus conflict can then occur and data hold time is assured.
tpH = 50 ns or tpF, whichever is less.

: 2. Load Circuit.
L2 ‘]r\ 7 +5V
F_ 2.1K
42]
8080A .
= outrut ° T c |
. I 150uA
nohy b == F 3 - =
1570 twa 3. toy = tD3 + trg2 * to2 + tp2 + tD2 + trp1 > 480ns. =
f {_————' ------ T~ TYPICAL A OUTPUT DELAY VS. A CAPACITANCE
0,0, FT=T=F - +20
) twp £
SYNC * : +10
’ o -
| |« taH a
- 0
DBIN / }_ é SPEC
, . 3 -1
<
w T e -
toc -100 -50 [} +50 +100
READY ° A CAPACITANCE (pf)
et —o] (Cacruar — Cspec!
WA 4. The following are relevant when interfacing the 8080A to devices having V|4 = 3.3V:
a) Maximum output rise time from .8V to 3.3V = 100ns @ C_ = SPEC.
HOLD Lol b) Output delay when measured to 3.0V = SPEC +60ns @ C|_= SPEC. ’
£ c) If C_# SPEC, add .6ns/pF if C| > Cgpg(, subtract .3ns/pF (from modified delay) if C|_ < Cgpgc.
—»| tpc |w— 5. tAw = 2tCY -tp3 -trgp2 -140nsec.
HLDA - e 6." tDW =tCY -tD3 -tr¢2 -170nsec.
¢ 7. 1f not HLDA, twp =twa = tp3 + trp2 +10ns. If HLDA, twp = twA = tWF.
! 8. tHF = tp3 * trgp2 -50ns.
NT [9. twFr =tp3 + trp2 -10ns
. 10. Data in must be stable for this period during DBIN ‘T3. Both tpgq and tpga must be satisfied.

11. Ready signal must be stable for this period during T or Tyy. (Must be externally synchronized.)

-t 12. Hold signal must be stable for this period during T2 or Tyy when entering hold mode, and during T3, T4, Tg
- and Ty when in hold mode. (External synchronization is not required.)
INTE 2 13. Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be

-t} recognized on the following instruction. (External synchronization is not required.)
14. This timing diagram shows timing relationships only; it does not represent any specific machine cycle.

5-17

SILICON GATE MOS 8080A

INSTRUCTION SET

The accumulator group instructions include arithmetic and
logical operators with direct, indirect, and immediate ad-
dressing modes.

Move, load, and-store instruction groups provide the ability
to move either 8 or 16 bits of data between memory, the
six working. registers and the accumulator using direct, in-
direct, and immediate addressing modes.

The ability to branch to different portions of the program
is provided with jump, jump conditional, and computed
jumps. Also the ability to call to and return from sub-
routines is provided both conditionally and unconditionally.
The RESTART (or single byte call instruction) is useful for
interrupt vector operation.

Double precision operators such as stack manipulation and
double add instructions extend both the arithmetic and
interrupt handling capability of the 8080A. The ability to

Data and Instruction Formats

increment and decrement memory, the six general registers
and the accumulator is provided as well as extended incre-
ment and decrement instructions to operate on the register
pairs and stack pointer. Further capability is provided by
the ability to rotate the accumulator left or right through
or around the carry bit.

Input and output may be accomplished using memory ad-
dresses as 1/0 ports or the directly addressed 1/0 provided
for in the 8080A instruction set.

The following special instruction group completes the 8080A
instruction set: the NOP instruction, HALT to stop pro-
cessor execution and the DAA instructions provide decimal
arithmetic capability. STC allows the carry flag to be di-
rectly set, and the CMC instruction allows it to be comple-
mented. CMA complements the contents of the accumulator
and XCHG exchanges the contents of two 16-bit register
pairs directly.

Data in the 8080A is stored in the form of 8-bit binary integers. All data transfers to the system data bus will be in the

same format.

D; Dg Ds D4 D3 D3 Dy Dg

DATA WORD

The program instructions may be one, two, or three bytes in length. Multiple byte instructions must be stored
in successive words in program memory. The instruction formats then depend on the particular operation

executed.

One Byte Instructions

D; Dg Dg Dy 'D3 D, Dy Do—l OP CODE
Two Byte Instructions

|D7 Dg Dg D4 D3 Dy Dy Dol OP CODE
[D; Dg Ds Dy D3 Dy Dy Dy | OPERAND

Three Byte Instructions

| D; Dg D5 D4 D3 Dy
[D; Dg Ds D4 D3 Dy
| D; De D5 D4 D3 D,

Do | OP CODE

Do | LOWADDRESSOR OPERAND 1
Do | HIGH ADDRESS OR OPERAND 2

TYPICAL INSTRUCTIONS

Register to register, memory refer-
ence, arithmetic or logical, rotate,
return, push, pop, enable or disable
Interrupt instructions

Immediate mode or 1/0 instructions

Jump, call or direct load and store
instructions

For the 8080A a logic 1" is defined as a high level and a logic 0" is defined as a low level.

5-18

SILICON GATE MOS 8080A

INSTRUCTION SET

Summary of Processor Instructions

2. Two possible cycle times, (5/11) indicate instruction cycles dependent on condition flags.

Instruction Code(1) Clock(2] Instruction Code!1] Clock(2]

Mnemonic Description D; Dg Ds Dy D3 D2 By Dg Cycles Mnemonic Description D; Dg Ds Dy D3 D Dy Dy Cycles
MOV, 2 Move register to register 01 DD DS § S 5 RZ Return on zero 1t 1+ 0 0 10 00O 5/11
MOV M,r Move register to memory 0 1 1 1 0 S S § 7 RNZ Return on no zero 1 1 0 0 0 0 C O 5/1
MOVr,M Move memory to register 01 DDDI1 10 17 RP Return on positive 11 1 1 00 0 O 5/1
HLT Halt | 01 1 1.0 1 10 1 RM Return on minus 1 1 1 1 10 00 5/11
MVir Move immediate register 00 D DODI11T 10 17 RPE Return on parity even 1 1 1. 0 1 0 00 5/11
MVIM Move immediate memory o0 1 1 0 1 10 .10 RPO Return on parity odd 1 1 1 0 00 00 5/11
INRT Increment register 00 D DD11O0OD 5 RST Restart 11 A A A1 1 1 "
DCR Decrement register 00 DD D1 01 5 IN Input 1 1 0 1t 10 1 1 10
INRM Increment memory 00 1 1 0 1 0O 10 ouT Output 1 1 0 1 0 0 1 1 10
DCRM Decrement memory o0 1 1 0 1 01 10 LXI B Load immediate register 00 0 0 0 0 0 1 10
ADD r Add register to A 1 00 0 0 0 S S § 4 PairB & C
ADCr Add register to A with carry 1t 0 0 0 1 S S8 S 4 LXI D Load immediate register 060 0 1 0 0 0 1 10
SUBr Subtract register from A 1t 0 0 1 0 S § S 4 PairD& E
S8Br Subtract register from A to 0 1 1 s §S 4 LXIH Load immediate register 00 1 000 01 10

with borrow PairH & L
ANA ¢ And register with A 10 1 0 0 S 8 S 4 LXI SP Load immediate stackpointer 0 0 1 1 0 0 0 1 10
XRA T Exclusive Or register with A 1 0 1 0 1 8 S8 § 4 PUSH B Push register Pair B & C on 1 1 0 0 0 1 0 1 n
ORAT Or register with A 1 0 1+ 1 0 S S S 4 stack
CMP ¢ Compare register with A 10 1 1 1 s §°8 4 PUSHD Push register Pair D & E on 11 0 1 0 1 0 1 "
ADDM Add memory to A 1 0 0 0 0 1 1 O 7 stack
ADCM Add memory to Awithcarry 1 0 0 0 1 1 1 0 1 PUSHH Push register Pair H& L on 11 1 0 0 1 01 1"
SUBM Subtract memory from A 1 0 0 1 0 1 10 7 stack
SBB M Subtract memory from A 1t 6 0 t 1 1 10 7 PUSH PSW Push A and Flags 1t 1 1 1 0 1 0 1 n

with borrow on stack
ANA M And memory with A 10 1 0 0 1V 10 7 POPB Pop register pair B & C off 11 0 0 0 0 0 1 10
XRAM Exclusive Or memory with A 10 1 0 1 1 10 7 stack
ORAM Or memory with A 1t 0 1 1 0 1 1 0 17 POPD Pop register pair D & E off 1 1 0 1 0 0 0 1 10
CMPM Compare memory with A 10 1t 1 1 1 10 7 stack
ADI Add immediate to A 11 0 0 0 1 10 7 POPH Pop register pair H & L off 11 1 0 0 0 0 1 10
ACI Add immediate to A with 1 1 0 0 1 1 10 7 stack

carry POPPSW Pop A and Flags 1 1 1t 1. 0 0 0 1 10
MU Subtract immediate from A 11 0 1 0 1 1 0 7 off stack
SBI Subtract immediate from A Tt 1 0 1t 1 1 10 7 STA Store A direct 00 1 1 00 10O 13

with borrow LDA Load A direct 00 t 1 1 0 10 13
ANI And immediate with A 1 1 1 0 0 1 1 0 7 XCHG Exchange D & E, H&L 11 1 0 1 0 11 4
XRI! Exclusive Or immediate with 1 1 1 0 1 1 10 7 Registers

A XTHL Exchange top of stack, H & L 11 1. 0 0 0 11 18
ORI Or immediate with A 11 11 0 1 1 0 7 SPHL H & L to stack pointer 1 1 1 1 1.0 0 1 5
cPl Compare immediate with A 1 1 1 1 1 1 10 7 PCHL H & L to program counter 11 1 0 1 0 0 1 5
RLC Rotate A left o0 0 0 0 1 1 1 4 DADB AddB&CtoH& L 00 0 0 1 0 0 1 10
RRC Rotate A right 00 0 0 1V 1 11 4 DADD AddD&EtoH&L 0o 0 0 1 1 0 0 1 10
RAL Rotate A left through carry 00 0 10 1 1 1 4 DADH AddH& Lto H& L 00 1 0 10 0 1 10
RAR Rotate A right through 00 0 1 11 11 4 DADSP Add stack pointerto H & L 00 1 1 1 0 01 10

carry STAX B Store A indirect 0 0 0 0 0 0 1 0 7
Jmp Jump unconditional 1T 1.0 000 11 10 STAXD Store A indirect 00 0 1 00 10 7
I Jump on carry t10 1 10 10 10 LDAXB Load A indirect 00 0 0 10 10 7
INC Jump on no carry Tt 1 0 1 00 10 10 LDAXD Load A indirect 00 0 1 10 10 7
iz Jump on zero Tt 1.0 0 1 0 10 10 INX B Increment B & C registers 00 0 000 11 5
Nz Jump on no zero 11 0 0 00 10 10 INXD Increment D & E registers 60 0 1 0 0 1 1 5
P Jump on positive 11 1 100 10 10 INX H Increment H & L registers 00 1 0 00 11 5
M Jump on minus T 1 1 1 1.0 10 10 INX SP Increment stack pointer 00 1 1 00 11 5
JPE Jump on parity even Tt o1 0 1 0 10 10 0CX B Decrement B & C 00 0 0 1 0 11 5
JP0 Jump on parity odd 11 1 000 10 10 .DCXD Decrement D & E 00 0 1 1 0 11 5
CALL Call unconditional 1t 1 0 0 1 1 01 17 DCXH Decrement H & L 00 1 0 1 0 1 1 [
cC Call on carry 11 0 1 1 1 00 nm DCXSP Decrement stack pointer 60 1t 1 1 0 1 1 5
CNC Call on no carry 1t 10 10 1 00O 1n CMA Complement A 00 1 0 1 1 1 1 Iy
cz Call on zero 1t 10 0 1 1 00 nni STC Set carry 00 1 1 0 1-1 1 4
CNZ Call on no zero 1 1 0 0 0 1 0 O 1M1 CMC Complement carry 00 t 1 1 1 11 4
cp Call on positive 1 1 1 1.0 1 00O 1117 DAA Decimal adjust A o0 0 1 0 0 t 1 1 4
CM Call on minus 11 1 1 1 1 00 mn SHLD Store H & L direct 00 1 0 0 0 10 16
CPE Call on parity even 11 1 0 1 1 0 O 117 LHLD Load H & L direct o0 1 0 1 0 1 0 16
CPO Call on parity odd 11 1 0 0 1 0 O 1/17 El Enable Interrupts 1 1 1 1 1 0 1 1 4
RET Return 1 1 0 0 1 0 0 1 10 DI Disable interrupt 1t 1 1 1.0 0 1 1 4
RC Return on carry 1 1 0 1 1 0 0 O 5/1 NOP No-operation 00 0 0 0 O O O 4
RNC Return on no carry 1t 1 0 1.0 0 00O 5/11 '
NOTES: 1. DDDor SSS —000B — 001 C— 010D —011'E—100 H — 101 L — 110 Memory — 111 A.

5-19

intel silicon Gate MOS 8080A-1
SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR

n TTL Drive Capability = Sixteen Bit Stack Pointer and Stack
Manipulation Instructions for Rapid

" 1.3 us Instruction Cycle Switching of the Program Environment

= Powerful Problem Solving = Decimal,Binary and Double
Instruction Set Precision Arithmetic

= Six General Purpose Registers = Ability to Provide Priority Vectored
and an Accumulator Interrupts

= Sixteen Bit Program Counter for = 512 Directly Addressed 1/0 Ports
Directly Addressing up to 64K Bytes
of Memory

The Intel® 8080A is a complete 8-bit parallel central processing unit (CPU). It is fabricated on a single LS| chip using Intel’s
n-channel silicon gate MOS process. This offers the user a high performance solution to control and processing applications.

The 8080A contains six 8-bit general purpose working registers and an accumulator. The six general purpose registers may be
addressed individually or in pairs providing both single and double precision operators. Arithmetic and logical instructions set
or reset four testable flags. A fifth flag provides decimal arithmetic operation.

The 8080A has an external stack feature wherein any portion of memory may be used as a last in/first out stack to store/
retrieve the contents of the accumulator, flags, program counter and all of the six general purpose registers. The sixteen bit
stack pointer controls the addressing of this external stack. This stack gives the 8080A the ability to easily handle multiple
level priority interrupts by rapidly storing and restoring processor status. It also provides almost unlimited subroutine nesting.

This microprocessor has been designed to simplify systems design. Separate 16-line address and 8-line bi-directional data
busses are used to facilitate easy interface to memory and 1/0. Signals to control the interface to memory and 1/O are pro-
vided directly by the 8080A. Ultimate control of the address and data busses resides with the HOLD signal. It provides the
ability to suspend processor operation and force the address and data busses into a high impedance state. This permits OR-
tying these busses with other controlling devices for (DMA) direct memory access or multi-processor operation.

DATA BUS
BUFFER/LATCH

| AccumuLaToR}

MULTIPLEXER

w ®) z @]
TEMP REG. TEMP REG.
B (8) C (8
REG. REG.
D (8) E ®]
REG. REG. [
H (8 L (8)
REG. REG.

ACCUMULATOR
LATCH (8)

REGISTER SELECT

ENCODING (16)

STACK POINTER

1e)
PROGRAM COUNTER

DECIMAL , 7 | INCREMENTER/DECREMENTER
ADJUST - ADDRESS LATCH (16)]

TIMING
AND
CONTROL

ADDRESS BUFFER
DATA BUS INTERRUPT HOLD WAIT

:JWRITE CONTROL CONTROL CONTROL CONTROL SYNC CLOCK

5-20

SILICON GATE MOS 8080A-1

ABSOLUTE MAXIMUM RATINGS*

Temperature UnderBias 0°C to +70°C
Storage Temperature -65°C to +150°C
All Input or Output Voltages

With RespecttoVgg -0.3V to +20V
Vce. Vop and Vgg With Respect to Vgg -0.3V to +20V
Power Dissipation 0.t 1.5W

*COMMENT: Stresses above those listed under "Absolute Maxi-
mum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the de-
vice at these or any other conditions above those indicated in
the operational sections of this specification is not implied. E x-
posure to absolute maximum rating conditions for extended
periods may affect device reliability.

D.C. CHARACTERISTICS

Ta = 0°C to 70°C, Vpp = +12V + 5%, Ve = +5V 5%, Vgg = -5V * 5%, Vsg = OV, Unless Otherwise Noted.

Symbol Parameter Min. Typ. Max. Unit Test Condition
ViLe Clock Input Low Voltage Vgs—1 Vsst+0.8 Y,
ViHe Clock Input High Voltage 9.0 Vppt1 Y
ViL Input Low Voltage Vgs—1 Vgs+0.8 \Y,
ViH Input High Voltage 3.3 Veet! \Y
VoL Output Low Voltage 0.45 \Y, | loL = 1.9mA on all outputs,
VoH Output High Voltage 3.7 v - || lon = 150uA.
Ipp (av) | Avg.Power Supply Current (Vpp) 40 70 mA]
Icc (av) | Avg. Power Supply Current (Vcc) 60 80 mA | Operaltion
Tcy = .32usec
Igg(av) | Avg.Power Supply Current (Vgg) .01 1 mA]
I Input Leakage 10 MA Vss < V| < Ve
leL Clock Leakage +10 MA Vss < Vcrock < Vpp
IpL (2] Data Bus Leakage in Input Mode -100 HA Vss<V|n <Vss+0.8V
20 | mA | e +0.8VSViy<Vee
IEL Ad(li)res.s and Data Bus Leakage +10 A Vappr/ipaTA = Vee
uring HOLD -100 VADDR/DATA = Vss + 0.45V
CAPACITANCE TYPICAL SUPPLY CURRENT VS.
T, = 25°C Ve = Vpp = Vss = 0V, Vgg =-5V .5 TEMPERATURE, NORMAL IZED. @]
Symbol Parameter Typ. Max. Unit Test Condition 5
Co Clock Capacitance 17 25 pf fe =1MHz 3
Cin Input Capacitance 6 10 pf Unmeasured Pins ; 10
Cout Output Capacitance 10 20 pf Returned to Vgg %’, T
NOTES:
1. The RESET signal must be active for a minimum of 3 clock cycles. %5y +25 +50 +75

2. When DBIN is high and V| > V|H an internal active pull up will
be switched onto the Data Bus.
3. Al supply / AT =-0.45%/°C.

AMBIENT TEMPERATURE (°C)

DATA BUS CHARACTERISTIC
DURING DBIN

MAX - — — — — x—

5-21

SILICON GATE MOS 8080A-1

A.c- CH AR ACTER ' s-n c s CAUTION: When operating the 8080A-1 at or near full speed, care must be taken to assure precise timing compatibility between 8080A-1, 8224 and 8228.

Ta =0°Cto 70°C, Vbp = +12V £ 5%, Vcc = +5V + 5%, Vgg = -5V * 5%, Vgs = 0V, Unless Otherwise Noted

Symbol Parameter Min. | Max. | Unit Test Condition
tcy[3! | Clock Period 32 | 2.0 | usec
t,, tf Clock Rise and Fall Time 0 25 | nsec
ty ¢1 Pulse Width 50 nsec
ty2 ¢, Pulse Width ' 145 nsec
tp1 Delay ¢, to ¢, 0 nsec
tp2 Delay ¢, to ¢4 . 60 nsec
tp3 Delay ¢ to ¢ Leading Edges 60 nsec
tpa [2) | Address Output Delay From ¢, 150 | nsec }
C_ = 50pf
tpp (21 | Data Output Delay From ¢, 180 | nsec
tpc (2] | Signal Output Delay From ¢y, or ¢, (SYNC, WR.WAIT, HLDA) 110 | nsec
tpr (2] | DBIN Delay From ¢, 25 | 130 | nsec } €L = 50pf
tp[1l Delay for Input Bus to Enter Input Mode tpg | nsec
tpst Data Setup Time During ¢4 and DBIN 10 nsec

[14]
TIMING WAVEFORMS (Note: Timing measurements are made at the following reference voltages: CLOCK ““1"* = 8.0V
0" =1.0V; INPUTS 1" = 3.3V, “0” = 0.8V; OUTPUTS “1" = 2.0V, “0"” = 0.8V.)

tey i —>|toy |-

. Hﬂi‘ _ | L A\ ,
N _ j pa r_]"_—L) y zf—’ﬁg

—_ '}____ S €1 A | O N |
[e—1tp 5 —>| taw

**‘DD—>| —>| tp |- — s toy|e— le—tpp—>
. L | 4
== Ybatain DATA OUT
[)7.00 ______ b o—— e - - =) SR - o .r-——_-.—{

—>{ tpgy |e— M—tow 1

SYNC ! tps2—
tDC -—

—=| toc |<—

DBIN N
e toF | < tor >

Reaoy — Xo Lo X !

ta o le—>
ths ‘ s D
WAIT > |-

—

toc—> i e :
HOLD @_ "
> tys l
HLDA)
+
— e ey
INT @_ l
Ys
ty —a| |
INTE

5-22

SILICON GATE MOS 8080A-1

A.C. CHARACTERISTICS (Continued)
Ta =0°C to 70°C, Vpp = +12V + 5%, Vg = +5V £ 5%, Vgg = -6V * 5%, Vsg = 0V, Unless Otherwise Noted

Symbol Parameter Min. | Max. | Unit Test Condition
tps2 Data Setup Time to ¢ During DBIN 120 nsec
tpu (1! | Data Hold Time From ¢, During DBIN Q)| nsec
tiel2] INTE Output Delay From ¢2 200 | nsec C_ = 50pf
trs READY Setup Time During ¢2 90 nsec
tHs HOLD Setup Time to ¢5 120 nsec
tis INT Setup Time During ¢2 (During ¢ in Halt Mode) 100 nsec
tH Hold Time From ¢ (READY, INT, HOLD) 0 nsec
teD Delay to Float During Hold (Address and Data Bus) 120 | nsec
taw[2) | Address Stable Prior to WR i5) nsec | |
tpw(2! | Output Data Stable Prior to WR 16 nsec
twpl2) | Output Data Stable From WR (7] nsec
twal2l | Address Stable From WR (71 nsec | |- gt:?g:ff 'V%gdrl-(leileiatg BIN
thel2] HLDA to Float Delay (8l nsec
twe (2] | WR to Float Delay 19l nsec
tan 2] | Address Hold Time After DBIN During HLDA -20 nsec | |
NOTES:

1. Data input should be enabled with DBIN status. No bus conflict can then occur and data hold time is assured.
tpH = 50 ns or tpF, whichever is less.

2. Load Circuit.

%, +5V

2.1K
2}

8080A

outPut & L c ! T
I 150pA

3. tCY =tp3 * g2 t 192 + tip2 D2 t trgp1 2> 320ns. -

As-Ag

TYPICAL A OUTPUT DELAY VS. A CAPACITANCE
+20

D,-D,

g
SYNC z "o
= -
— — tan g
- 0
DBIN / x g . spec
° b=
| 3 -1
. “
W] d — typ —s 20
N -100 -50 [} +50 +100
. | toc
READY A CAPACITANCE (pf)
C — Cgpec!)
D (CactuaL — Cspec
WAIT
s 4. The following are relevant when interfacing the 8080A to devices having V|4 = 3.3V:
a) Maximum output rise time from .8V to 3.3V = 100ns @ C|_= SPEC.
HOLD - b) Output delay when measured to 3.0V = SPEC +60ns @ Cy_= SPEC.
I’ c) If C_ # SPEC, add .6ns/pF if C| > Cgpgc, subtract .3ns/pF (from modified delay) if Ci_ < Cspgc.
—»| tpc |w— 5. taw = 2tCy -tp3 ~trp2 -110nsec.
HLDA = [r— 6. tpw =tCY -tD3 -trp2 -150nsec.
¢ 7. 1f not HLDA, twp =twA = tp3 *+ trp2 +10ns. If HLDA, twp = tWA = tWF.
8. tHF = tp3 * tr¢2 -50ns.
NT f— 9. twF =tp3 + typ2 -10ns
. 10. Data in must be stable for this period during DBIN *T3. Both tpg1 and tpg2 must be satisfied.
o 11. Ready signal must be stable for this period during T or Tyy. (Must be externally synchronized.)
12

-t . Hold signal must be stable for this period during T9 or Tyy when entering hold mode, and during T3, T4, Tg
- and Ty when in hold mode. (External synchronization is not required.)
INTE) 13. Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be

! recognized on the following instruction. (External synchronization is not required.)
14. This timing diagram shows timing relationships only; it does not represent any specific machine cycle.

5-23

iNtel" Silicon Gate MOS 8080A-2
SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR

n TTL Drive Capability = Sixteen Bit Stack Pointer and Stack
Manipulation Instructions for Rapid

" 1.5 us Instruction Cycle Switching of the Program Environment

= Powerful Problem Solving = Decimal,Binary and Double
Instruction Set Precision Arithmetic

= Six General Purpose Registers = Ability to Provide Priority Vectored
and an Accumulator Interrupts

= Sixteen Bit Program Counter for = 512 Directly Addressed 1/0 Ports
Directly Addressing up to 64K Bytes
of Memory

The Intel® 8080A is a complete 8-bit parallel central processing unit (CPU). It is fabricated on a single LSI chip using Intel’s
n-channel silicon gate MOS process. This offers the user a high performance solution to control and processing applications.

The 8080A contains six 8-bit general purpose working registers and an accumulator. The six general purpose registers may be
addressed individually or in pairs providing both single and double precision operators. Arithmetic and logical instructions set
or reset four testable flags. A fifth flag provides decimal arithmetic operation.

The 8080A has an external stack feature wherein any portion of memory may be used as a last in/first out stack to store/
retrieve the contents of the accumulator, flags, program counter and all of the six general purpose registers. The sixteen bit
stack pointer controls the addressing of this external stack. This stack gives the 8080A the ability to easily handle multiple
level priority interrupts by rapidly storing and restoring processor status. It also provides almost unlimited subroutine nesting.
This microprocessor has been designed to simplify systems design. Separate 16-line address and 8-line bi-directional data
busses are used to facilitate easy interface to memory and 1/0. Signals to control the interface to memory and |/0O are pro-
vided directly by the 8080A. Ultimate control of the address and data busses resides with the HOLD signal. It provides the
ability to suspend processor operation and force the address and data busses into a high impedance state. This permits OR-
tying these busses with other controlling devices for (DMA) direct memory access or multi-processor operation.

DATA BUS
BUFFER/LATCH

INSTRUCTION

REGISTER MULTIPLEXER

FLAG (8 £ w 8))
FLIP-FLOPS I TEMP REG. TEMP REG.
—yr— - B (®) c
REG. REG.
D 8) E
REG. REG.
H (8) L
REG. REG.

ACCUMULATOR
LATCH (8)

\ A’RITHME'&'IC INSTRUCTION

LOGIC
uNIT

(ALU)
(8 : ENCODING

el

REGISTER SELECT

STACK POINTER

(16)
PROGRAM COUNTER

DECIMAL : ‘] INCREMENTER/DECREMENTER
ADJUST ADDRESS LATCH (16)

TIMING
AND
CONTROL

ADDRESS BUFFER
DATA BUS INTERRUPT HOLD WAIT

WRITE CONTROL CONTROL CONTROL CONTROL SYNC CLOCK

% 73

5-24

SILICON GATE MOS 8080A-2

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias 0°C to +70° C
Storage Temperature -65°C to +150°C
All Input or Output Voltages

With RespecttoVgg c oo v oo -0.3V to +20V
Vee. Vpp and Vgg With Respect to Vgg -0.3V to +20V
Power Dissipation oot 1.5W

*COMMENT: Stresses above those listed under "Absolute Maxi-
mum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the de-
vice at these or any other conditions above those indicated in
the operational sections of this specification is not implied. Ex-
posure to absolute maximum rating conditions for extended
periods may affect device reliability.

D.C. CHARACTERISTICS

Ta = 0°C to 70°C, Vpp = +12V * 5%, Vg = +5V * 5%, Vgg = -5V * 5%, Vss = OV, Unless Otherwise Noted.
CcC

Symbol Parameter Min. Typ. Max. Unit Test Condition
ViLe Clock Input Low Voltage Vgs—1 Vss+0.8 Vv
ViHe Clock Input High Voltage 9.0 Vpp+1 \Y
ViL Input Low Voltage Vgs—1 Vgs+0.8 \Y
ViH Input High Voltage 3.3 Veet+1 \Y
VoL Output Low Voltage 0.45 v loL = 1.9mA on all outputs,
Vou Output High Voltage 3.7 v lon = 150uA.
Ipp(av) | Avg.Power Supply Current (Vpp) 40 70 mA
| Avg. Power Supply Current (V) 60 80 mA Operation
CC(AV) - cc Tcy = .38usec
Igg (av) | Avg.Power Supply Current (Vgg) .01 1 mA]
e Input Leakage +10 uA Vss < Vin < Vee
lcL Clock Leakage *10 LA Vss < Verock < Vpp
1p (2] Data Bus Leakage in Input Mode -100 HA Vs <V|N <Vgs+0.8V
-2.0 mA Vgs +0.8V<ViNy<Vce
Address and Data Bus Leakage +10 VaDDR/DATA = Ve
kL During HOLD oo | KA
uring -1 VADDR/DATA = Vss + 0.45V
CAPACOITANCE TYPICAL SUPPLY CURRENT VS.
T,=26°C Vcc = Vpp = Vss =0V, Vgg =-5V .5 TEMPERATURE, NORMALIZED. 3]
Symbol Parameter Typ. Max. Unit Test Condition -
2
Cy Clock Capacitance 17 25 pf fo=1MHz :
2
Cin Input Capacitance 6 10 pf Unmeasured Pins ; 10
Cour | Output Capacitance | 10 20 pf | Returned to Vsg 3 I
NOTES:
1. The RESET signal must be active for a minimum of 3 clock cycles. 0'50 +25 +50 +75
2. When DBIN is high and V| > V|4 an internal active pull up will
be switched onto the Data Bus. AMBIENT TEMPERATURE (*C)
3. Al supply / AT =-0.45%/°C.
DATA BUS CHARACTERISTIC
DURING DBIN
MAX - — — — —] —
Ipy
% Vee
Vin

5-25

SILICON GATE MOS 8080A-2

A.C. CHARACTERISTICS

Ta =0°C 10 70°C, Vpp = +12V £ 5%, Ve = +5V * 5%, Vgg = -5V * 5%, Vs = OV, Unless Otherwise Noted

Symbol Parameter Min. | Max. | Unit Test Condition
tey[3] | Clock Period .38 | 2.0 | msec
t,, tf Clock Rise and Fall Time 0 50 | nsec
ty1 ¢1 Pulse Width 60 nsec
tg2 ¢ Pulse Width 175 nsec
tp1 Delay ¢ to ¢, 0 nsec
tpo Delay ¢, to ¢, 70 nsec
tp3 Delay ¢y to ¢, Leading Edges 70 nsec
tpa (2] | Address Output Delay From ¢, 175 | nsec }
CL = 100pf
tpp [2] | Data Output Delay From ¢, 200 | nsec
tpc[2) | Signal Output Delay From ¢4, or ¢5 (SYNC, WR,WAIT, HLDA) 120 | nsec
tpr (2] | DBIN Delay From ¢, 25 | 140 | nsec }C" = 80pf
tp (1] Delay for Input Bus to Enter Input Mode tpg | nsec
tpst Data Setup Time During ¢, and DBIN 20 nsec

TIMING WAVEFORMS "4

“0" = 1.0V; INPUTS 1" = 3.3V, 0" = 0.8V; OUTPUTS “1"" = 2.0V, “0” = 0.8V.)

(Note: Timing measurements are made at the following reference voltages: CLOCK “*1"" = 8.0V

tey —>{tp1 [
— <—t¢1 I
o / / 7\ f\
<—'¢z—>
“ ¥ I\ N) s
| -
“tDZ"| —| tpy |=—
- } -4 - $
b a— B S
*ba taw
‘_'DD_’l —| tp |<— | — ‘DH|<— ‘_tDD_’l)
oD q == Jbatamw F DATA ou1'+_{
3D =—————— e —————— —_— - b e e bl ———
—>| tos1 [-— ' ‘ow e F
SYNC ‘_ tps2—
—»| tpc |[=— —| t5¢ lq—
]
DBIN A
<-‘m=-j.r ~ tor |
WA L ,
___________ o l —
‘H —| r<—
ReADY _ RO Sc1k 4
trs tpc le—|
tas)
ty —»| |-
WAIT H
toc—> W;— - tH | |-
HOLD ®@ (
—| 'Hs -—
HLDA .
’
— L —
@]
Yis
ty — (-
INTE

5-26

SILICON GATE MOS 8080A-2

2]

[}

AsAg

D;-Dg

SYNC

DBIN

READY

WAIT

HOLD

HLDA

INT

INTE

A.C. CHARACTERISTICS (Continued)
Ta = 0°C to 70°C, Vpp = +12V * 5%, Vg = +5V £ 5%, Vgg = -5V * 5%, Vgg = OV, Unless Otherwise Noted

Symbol Parameter Min. | Max. | Unit Test Condition

tps2 Data Setup Time to ¢, During DBIN 130 nsec

tpn[1] | Data Hold Time From ¢ During DBIN 1) nsec

tyel2] INTE Output Delay From ¢, 200 | nsec C_ = 50pf

tRs READY Setup Time During ¢2 90 nsec

tHs HOLD Setup Time to ¢2 120 nsec

tis INT Setup Time During ¢ (During ¢4 in Halt Mode) 100 nsec

tHy Hold Time From ¢ (READY, INT, HOLD) 0 nsec

tep Delay to Float During Hold (Address and Data Bus) 120 | nsec

taw(2! | Address Stable Prior to WR (5] nsec ||

tpw(2] | Output Data Stable Prior to WR (6] nsec

twpl2] | Output Data Stable From WR (7] nsec

twal2l | Address Stable From WR {7 nsec | CL=100pf: Address, Data
C_=50pf: WR, HLDA, DBIN

tyel2l | HLDA to Float Delay (8] nsec

twe (2! | WR to Float Delay 191 nsec

tan[2] | Address Hold Time After DBIN During HLDA -20 nsec | _|

NOTES:

1. Data input should be enabled with DBIN status. No bus conflict can then occur and data hold time is assured.
tpH = 50 ns or tpF, whichever is less.

JL-\ 2. Load Circuit.

—| D |e—

— ——— —— -_—-——
-
(-

»r

*

C—— —— -
-
-

— I tan

*

v

[thF —*

8080A

+5V

2.1K

output ° I, ' 1
T 150uA

twa 3. tey =tp3 * trp2 + 192 + tip2 + tD2 + trpq = 380ns. =

TYPICAL A OUTPUT DELAY VS. A CAPACITANCE

A OUTPUT DELAY (ns)

9. twF =tp3 * tr¢2 -10ns

+20

+10

-10

SPEC

-20

-100

0 +50 +100

A CAPACITANCE (pf)
(Cacruar ~ Cspec!

4. The following are relevant when interfacing the 8080A to devices having V|4 = 3.3V:
a) Maximum output rise time from .8V to 3.3V = 100ns @ C|_= SPEC.
b) Output delay when measured to 3.0V = SPEC +60ns @ C_= SPEC.
c) If C # SPEC, add .6ns/pF if C| > Cgpg. subtract .3ns/pF (from modified delay) if C_ < Cspgc.
5. taw = 2tCy -tD3 -trp2 -130nsec. ’
= 6. tpw =tCY -tD3 -trp2 -170nsec.
7. If not HLDA, twp =twA = tp3 *+ trg2 +10ns. If HLDA, twp = twA = tWF.
8. tHF = tp3 * typ2 ~50ns.

10. Data in must be stable for this period during DBIN *T3. Both tpg{ and tpg2 must be satisfied.

11. Ready signal must be stable for this period during T or Tyy. (Must be externally synchronized.)
e 12. Hold signal must be stable for this period during T2 or Tyy when entering hold mede, and during T3, T4, T
- and TwH when in hold mode. (External synchronization is not required.)

-

13. Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be
, recognized on the followiag instruction. (External synchronization is not required.)

14. This timing diagram shows timing relationships only; it does not represent any specific machine cycle.

5-27

intel silicon Gate MOS M8080A
SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR

= Full Military Temperature Range = Sixteen Bit Stack Pointer and Stack
—55°Cto +125°C Manipulation Instructions for Rapid

= +10% Power Supply Tolerance Switching of the Program Environment

= 2 us Instruction Cycle = Decimal,Binary and Double

Precision Arithmetic
= Powerful Problem Solving

Instruction Set = Ability to Provide Priority Vectored
Int t
= Six General Purpose Registers n err-up S
and an Accumulator = 512 Directly Addressed /0 Ports
= Sixteen Bit Program Counter for = TTL Drive Capability
Directly Addressing up to 64K Bytes
of Memory

The Intel® M8080A is a complete 8-bit parallel central processing unit (CPU). It is fabricated on a single LS| chip using Intel’s
n-channel silicon gate MOS process. This offers the user a high performance solution to control and processing applications.

The M8080A contains six 8-bit general purpose working registers and an accumulator. The six general purpose registers may be
addressed individually or in pairs providing both single and double precision operators. Arithmetic and logical instructions set
or reset four testable flags. A fifth flag provides decimal arithmetic operation.

The M8080A has an external stack feature wherein any portion of memory may be used as a last in/first out stack to store/
retrieve the contents of the accumulator, flags, program counter and all of the six general purpose registers. The sixteen bit
stack pointer controls the addressing of this external stack. This stack gives the M8080A the ability to easily handle multiple
level priority interrupts by rapidly storing and restoring processor status. It also provides almost unlimited subroutine nesting.

This microprocessor has been designed to simplify systems design. Separate 16-line address and 8-line bi-directional data
busses are used to facilitate easy interface to memory and 1/0. Signals to control the interface to memory and |/O are pro-
vided directly by the MBO8OA. Ultimate control of the address and data busses resides with the HOLD signal. It provides the
ability to suspend processor operation and force the address and data busses into a high impedance state. This permits OR-
tying these busses with other controlling devices for (DMA) direct memory access or multi-processor operation.

ATA BUS
[oATABUS
BUFFER/LATCH

—

! y b s
.. . [nsTRUCTION :
TEMP. REG. | ReGISTER @] MULTIPLEXER J/
R i w (8) z 18)
5) 7 ¥
b F;;_“;‘EOP il IL TEMP REG. TEMP REG.
1 ACCUMULATOR]. - o — - - B (8) c t
LATCH (8 ,~ o i 18 REG. REG.
: ARITHMETIC| INSTRUCTION 1a D ® 3]
¥l LoGic DEiﬁgE“ b REG. REG.
O\ UNIT MACHINE g E H 8) L [E]) B
CYCLE] REG. REG.
ENCODING 2 0
’ 1= STACK POINTER
o b PROGRAM COUNTER
DECIMA e
|_AbJust IR ()

.| INCREMENTER/DECREMENTER
ADDRESS LATCH ne:

TIMING

AND B

CONTROL g e
o DATA BUS INTERRUPT HOLD WAIT oy | ADDRESS BUFFER
“|WRITE_CONTROL CONTROL CONTROL CONTROL SYNC ctocks| : | = T =

E INT HOLD HOLDWAIT. |~ SYNC o1 52 RESET
CUACK READY. P

5-29

SILICON GATE MOS M8080A

INSTRUCTION SET

The accumulator group instructions include arithmetic and
logical operators with direct, indirect, and immediate ad-
dressing modes.

Move, load, and store instruction groups provide the ability
to move either 8 or 16 bits of data between memory, the
six working registers and the accumulator using direct, in-
direct, and immediate addressing modes.

The ability to branch to different portions of the program
is provided with jump, jump conditional, and computed
jumps. Also the ability to call to and return from <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>